Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385878109> ?p ?o ?g. }
- W4385878109 endingPage "533" @default.
- W4385878109 startingPage "533" @default.
- W4385878109 abstract "Rubber tree is one of the essential tropical economic crops, and rubber tree powdery mildew (PM) is the most damaging disease to the growth of rubber trees. Accurate and timely detection of PM is the key to preventing the large-scale spread of PM. Recently, unmanned aerial vehicle (UAV) remote sensing technology has been widely used in the field of agroforestry. The objective of this study was to establish a method for identifying rubber trees infected or uninfected by PM using UAV-based multispectral images. We resampled the original multispectral image with 3.4 cm spatial resolution to multispectral images with different spatial resolutions (7 cm, 14 cm, and 30 cm) using the nearest neighbor method, extracted 22 vegetation index features and 40 texture features to construct the initial feature space, and then used the SPA, ReliefF, and Boruta–SHAP algorithms to optimize the feature space. Finally, a rubber tree PM monitoring model was constructed based on the optimized features as input combined with KNN, RF, and SVM algorithms. The results show that the simulation of images with different spatial resolutions indicates that, with resolutions higher than 7 cm, a promising classification result (>90%) is achieved in all feature sets and three optimized feature subsets, in which the 3.4 cm resolution is the highest and better than 7 cm, 14 cm, and 30 cm. Meanwhile, the best classification accuracy was achieved by combining the Boruta–SHAP optimized feature subset and SVM model, which were 98.16%, 96.32%, 95.71%, and 88.34% at 3.4 cm, 7 cm, 14 cm, and 30 cm resolutions, respectively. Compared with SPA–SVM and ReliefF–SVM, the classification accuracy was improved by 6.14%, 5.52%, 12.89%, and 9.2% and 1.84%, 0.61%, 1.23%, and 6.13%, respectively. This study’s results will guide rubber tree plantation management and PM monitoring." @default.
- W4385878109 created "2023-08-17" @default.
- W4385878109 creator A5018892762 @default.
- W4385878109 creator A5025543632 @default.
- W4385878109 creator A5027899074 @default.
- W4385878109 creator A5042003722 @default.
- W4385878109 creator A5057135582 @default.
- W4385878109 creator A5064035828 @default.
- W4385878109 creator A5067982858 @default.
- W4385878109 creator A5075610312 @default.
- W4385878109 date "2023-08-16" @default.
- W4385878109 modified "2023-09-30" @default.
- W4385878109 title "Recognition of Rubber Tree Powdery Mildew Based on UAV Remote Sensing with Different Spatial Resolutions" @default.
- W4385878109 cites W1977688842 @default.
- W4385878109 cites W2003341332 @default.
- W4385878109 cites W2009542758 @default.
- W4385878109 cites W2011475440 @default.
- W4385878109 cites W2015613423 @default.
- W4385878109 cites W2022477777 @default.
- W4385878109 cites W2064417027 @default.
- W4385878109 cites W2084236720 @default.
- W4385878109 cites W2100057069 @default.
- W4385878109 cites W2109862393 @default.
- W4385878109 cites W2157760685 @default.
- W4385878109 cites W2163410149 @default.
- W4385878109 cites W2163450852 @default.
- W4385878109 cites W2166516660 @default.
- W4385878109 cites W2215235362 @default.
- W4385878109 cites W2253235561 @default.
- W4385878109 cites W2299422107 @default.
- W4385878109 cites W2548632986 @default.
- W4385878109 cites W2556502614 @default.
- W4385878109 cites W2731050796 @default.
- W4385878109 cites W2891621712 @default.
- W4385878109 cites W2948667570 @default.
- W4385878109 cites W2971480543 @default.
- W4385878109 cites W2971526891 @default.
- W4385878109 cites W3012400249 @default.
- W4385878109 cites W3087935190 @default.
- W4385878109 cites W3088877620 @default.
- W4385878109 cites W3117750810 @default.
- W4385878109 cites W3120426666 @default.
- W4385878109 cites W3128128489 @default.
- W4385878109 cites W3138644757 @default.
- W4385878109 cites W3153408329 @default.
- W4385878109 cites W3159790736 @default.
- W4385878109 cites W3163896736 @default.
- W4385878109 cites W3164557208 @default.
- W4385878109 cites W3182539311 @default.
- W4385878109 cites W4205613021 @default.
- W4385878109 cites W4291121859 @default.
- W4385878109 cites W4294151665 @default.
- W4385878109 cites W4297882793 @default.
- W4385878109 cites W4298325713 @default.
- W4385878109 cites W4307827516 @default.
- W4385878109 cites W4311132262 @default.
- W4385878109 cites W4315474362 @default.
- W4385878109 cites W4322627125 @default.
- W4385878109 doi "https://doi.org/10.3390/drones7080533" @default.
- W4385878109 hasPublicationYear "2023" @default.
- W4385878109 type Work @default.
- W4385878109 citedByCount "0" @default.
- W4385878109 crossrefType "journal-article" @default.
- W4385878109 hasAuthorship W4385878109A5018892762 @default.
- W4385878109 hasAuthorship W4385878109A5025543632 @default.
- W4385878109 hasAuthorship W4385878109A5027899074 @default.
- W4385878109 hasAuthorship W4385878109A5042003722 @default.
- W4385878109 hasAuthorship W4385878109A5057135582 @default.
- W4385878109 hasAuthorship W4385878109A5064035828 @default.
- W4385878109 hasAuthorship W4385878109A5067982858 @default.
- W4385878109 hasAuthorship W4385878109A5075610312 @default.
- W4385878109 hasBestOaLocation W43858781091 @default.
- W4385878109 hasConcept C113174947 @default.
- W4385878109 hasConcept C12267149 @default.
- W4385878109 hasConcept C134306372 @default.
- W4385878109 hasConcept C138885662 @default.
- W4385878109 hasConcept C144027150 @default.
- W4385878109 hasConcept C153180895 @default.
- W4385878109 hasConcept C154945302 @default.
- W4385878109 hasConcept C173163844 @default.
- W4385878109 hasConcept C205372480 @default.
- W4385878109 hasConcept C205649164 @default.
- W4385878109 hasConcept C2776401178 @default.
- W4385878109 hasConcept C2779336322 @default.
- W4385878109 hasConcept C31972630 @default.
- W4385878109 hasConcept C33923547 @default.
- W4385878109 hasConcept C41008148 @default.
- W4385878109 hasConcept C41895202 @default.
- W4385878109 hasConcept C52622490 @default.
- W4385878109 hasConcept C62649853 @default.
- W4385878109 hasConcept C83665646 @default.
- W4385878109 hasConcept C86803240 @default.
- W4385878109 hasConceptScore W4385878109C113174947 @default.
- W4385878109 hasConceptScore W4385878109C12267149 @default.
- W4385878109 hasConceptScore W4385878109C134306372 @default.
- W4385878109 hasConceptScore W4385878109C138885662 @default.
- W4385878109 hasConceptScore W4385878109C144027150 @default.
- W4385878109 hasConceptScore W4385878109C153180895 @default.