Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385878161> ?p ?o ?g. }
- W4385878161 endingPage "967" @default.
- W4385878161 startingPage "967" @default.
- W4385878161 abstract "Subarachnoid hemorrhage (SAH) denotes a serious type of hemorrhagic stroke that often leads to a poor prognosis and poses a significant socioeconomic burden. Timely assessment of the prognosis of SAH patients is of paramount clinical importance for medical decision making. Currently, clinical prognosis evaluation heavily relies on patients’ clinical information, which suffers from limited accuracy. Non-contrast computed tomography (NCCT) is the primary diagnostic tool for SAH. Radiomics, an emerging technology, involves extracting quantitative radiomics features from medical images to serve as diagnostic markers. However, there is a scarcity of studies exploring the prognostic prediction of SAH using NCCT radiomics features. The objective of this study is to utilize machine learning (ML) algorithms that leverage NCCT radiomics features for the prognostic prediction of SAH. Retrospectively, we collected NCCT and clinical data of SAH patients treated at Beijing Hospital between May 2012 and November 2022. The modified Rankin Scale (mRS) was utilized to assess the prognosis of patients with SAH at the 3-month mark after the SAH event. Based on follow-up data, patients were classified into two groups: good outcome (mRS ≤ 2) and poor outcome (mRS > 2) groups. The region of interest in NCCT images was delineated using 3D Slicer software, and radiomic features were extracted. The most stable and significant radiomic features were identified using the intraclass correlation coefficient, t-test, and least absolute shrinkage and selection operator (LASSO) regression. The data were randomly divided into training and testing cohorts in a 7:3 ratio. Various ML algorithms were utilized to construct predictive models, encompassing logistic regression (LR), support vector machine (SVM), random forest (RF), light gradient boosting machine (LGBM), adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and multi-layer perceptron (MLP). Seven prediction models based on radiomic features related to the outcome of SAH patients were constructed using the training cohort. Internal validation was performed using five-fold cross-validation in the entire training cohort. The receiver operating characteristic curve, accuracy, precision, recall, and f-1 score evaluation metrics were employed to assess the performance of the classifier in the overall dataset. Furthermore, decision curve analysis was conducted to evaluate model effectiveness. The study included 105 SAH patients. A comprehensive set of 1316 radiomics characteristics were initially derived, from which 13 distinct features were chosen for the construction of the ML model. Significant differences in age were observed between patients with good and poor outcomes. Among the seven constructed models, model_SVM exhibited optimal outcomes during a five-fold cross-validation assessment, with an average area under the curve (AUC) of 0.98 (standard deviation: 0.01) and 0.88 (standard deviation: 0.08) on the training and testing cohorts, respectively. In the overall dataset, model_SVM achieved an accuracy, precision, recall, f-1 score, and AUC of 0.88, 0.84, 0.87, 0.84, and 0.82, respectively, in the testing cohort. Radiomics features associated with the outcome of SAH patients were successfully obtained, and seven ML models were constructed. Model_SVM exhibited the best predictive performance. The radiomics model has the potential to provide guidance for SAH prognosis prediction and treatment guidance." @default.
- W4385878161 created "2023-08-17" @default.
- W4385878161 creator A5025104684 @default.
- W4385878161 creator A5033104756 @default.
- W4385878161 creator A5044826704 @default.
- W4385878161 creator A5048989648 @default.
- W4385878161 creator A5068338025 @default.
- W4385878161 date "2023-08-16" @default.
- W4385878161 modified "2023-09-25" @default.
- W4385878161 title "Non-Contrasted CT Radiomics for SAH Prognosis Prediction" @default.
- W4385878161 cites W2070306204 @default.
- W4385878161 cites W2738435248 @default.
- W4385878161 cites W2786238001 @default.
- W4385878161 cites W2793363183 @default.
- W4385878161 cites W2909576376 @default.
- W4385878161 cites W2935703330 @default.
- W4385878161 cites W2954497554 @default.
- W4385878161 cites W2992708768 @default.
- W4385878161 cites W3029144285 @default.
- W4385878161 cites W3094257800 @default.
- W4385878161 cites W3107335993 @default.
- W4385878161 cites W3138711151 @default.
- W4385878161 cites W3157606622 @default.
- W4385878161 cites W3176115585 @default.
- W4385878161 cites W4205113133 @default.
- W4385878161 cites W4206289755 @default.
- W4385878161 cites W4220720785 @default.
- W4385878161 cites W4229444909 @default.
- W4385878161 cites W4283827741 @default.
- W4385878161 cites W4285076992 @default.
- W4385878161 cites W4292682762 @default.
- W4385878161 cites W4293081069 @default.
- W4385878161 cites W4293276167 @default.
- W4385878161 cites W4302287315 @default.
- W4385878161 cites W4310117627 @default.
- W4385878161 cites W4310779494 @default.
- W4385878161 cites W4311438967 @default.
- W4385878161 cites W4318755416 @default.
- W4385878161 cites W4367671258 @default.
- W4385878161 cites W4376134639 @default.
- W4385878161 cites W4379537327 @default.
- W4385878161 cites W4380200289 @default.
- W4385878161 cites W4380356348 @default.
- W4385878161 cites W4380551368 @default.
- W4385878161 doi "https://doi.org/10.3390/bioengineering10080967" @default.
- W4385878161 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37627852" @default.
- W4385878161 hasPublicationYear "2023" @default.
- W4385878161 type Work @default.
- W4385878161 citedByCount "0" @default.
- W4385878161 crossrefType "journal-article" @default.
- W4385878161 hasAuthorship W4385878161A5025104684 @default.
- W4385878161 hasAuthorship W4385878161A5033104756 @default.
- W4385878161 hasAuthorship W4385878161A5044826704 @default.
- W4385878161 hasAuthorship W4385878161A5048989648 @default.
- W4385878161 hasAuthorship W4385878161A5068338025 @default.
- W4385878161 hasBestOaLocation W43858781611 @default.
- W4385878161 hasConcept C104709138 @default.
- W4385878161 hasConcept C119857082 @default.
- W4385878161 hasConcept C126322002 @default.
- W4385878161 hasConcept C126838900 @default.
- W4385878161 hasConcept C171606756 @default.
- W4385878161 hasConcept C2777736543 @default.
- W4385878161 hasConcept C2778559731 @default.
- W4385878161 hasConcept C2780931571 @default.
- W4385878161 hasConcept C3020199598 @default.
- W4385878161 hasConcept C41008148 @default.
- W4385878161 hasConcept C541997718 @default.
- W4385878161 hasConcept C70410870 @default.
- W4385878161 hasConcept C71924100 @default.
- W4385878161 hasConceptScore W4385878161C104709138 @default.
- W4385878161 hasConceptScore W4385878161C119857082 @default.
- W4385878161 hasConceptScore W4385878161C126322002 @default.
- W4385878161 hasConceptScore W4385878161C126838900 @default.
- W4385878161 hasConceptScore W4385878161C171606756 @default.
- W4385878161 hasConceptScore W4385878161C2777736543 @default.
- W4385878161 hasConceptScore W4385878161C2778559731 @default.
- W4385878161 hasConceptScore W4385878161C2780931571 @default.
- W4385878161 hasConceptScore W4385878161C3020199598 @default.
- W4385878161 hasConceptScore W4385878161C41008148 @default.
- W4385878161 hasConceptScore W4385878161C541997718 @default.
- W4385878161 hasConceptScore W4385878161C70410870 @default.
- W4385878161 hasConceptScore W4385878161C71924100 @default.
- W4385878161 hasIssue "8" @default.
- W4385878161 hasLocation W43858781611 @default.
- W4385878161 hasLocation W43858781612 @default.
- W4385878161 hasOpenAccess W4385878161 @default.
- W4385878161 hasPrimaryLocation W43858781611 @default.
- W4385878161 hasRelatedWork W2143394782 @default.
- W4385878161 hasRelatedWork W2218047265 @default.
- W4385878161 hasRelatedWork W2313074380 @default.
- W4385878161 hasRelatedWork W2369704874 @default.
- W4385878161 hasRelatedWork W2387300907 @default.
- W4385878161 hasRelatedWork W2393810208 @default.
- W4385878161 hasRelatedWork W2414520026 @default.
- W4385878161 hasRelatedWork W3039977083 @default.
- W4385878161 hasRelatedWork W3157347412 @default.
- W4385878161 hasRelatedWork W4243003639 @default.
- W4385878161 hasVolume "10" @default.