Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385880244> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4385880244 endingPage "012027" @default.
- W4385880244 startingPage "012027" @default.
- W4385880244 abstract "Abstract Time series modeling and forecasting using a machine learning algorithm approach for Iwo City, a western city in Nigeria, is a technique used to forecast the future occurrence of diverse data for the study. The purpose of this study is to use time series models and some machine learning approaches to predict the temperature in the future for climate change. The Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) Web service provided the information used in this study. The dataset underwent training and testing in an 80/20 per cent manner. Using seasonal auto-regressive integrated moving average (SARIMA) and twenty-four (24) different Machine Learning algorithms of regression performance of the temperature, future predictions of Iwo station, were made using training data that spans the years 1980 to 2012 and test data that spans the years 2013 to 2021. The results reveal that the standard deviation value ranges from 2.4×10 -05 to 0.031, while the optimum model for the SARIMA (1, 0, 0) and Akaike’s Information Criterion (AIC) spans from 961.090 to 1341.831. Furthermore, the results of the statistical analysis show that the maximum average temperature recorded in April was 303.68K, the minimum temperature recorded in January was 293.23K with a maximum standard deviation of 1.84 in February, and the minimum standard deviation for the temperature was 0.42 in September. For the machine learning algorithm, Exponential GPR shows the highest R 2 of 0.19 while the least Ensemble Boosted Trees (R 2 = -46.24). In terms of the forecasting performance of these machine learning algorithms based on RMSE, the best forecasting model was Medium Neural Network (RMSE = 1.8112). The result also reveals that Fine Gaussian gave the least MAE = 1.19, while the least MSE = 2.7534 meaning that these machine learning algorithms outperformed other models. As a result, the report recommends that Nigerian meteorological management establishes additional research centers to collect data and conduct research." @default.
- W4385880244 created "2023-08-17" @default.
- W4385880244 creator A5023394499 @default.
- W4385880244 creator A5034894325 @default.
- W4385880244 creator A5036577488 @default.
- W4385880244 creator A5050433082 @default.
- W4385880244 creator A5078004369 @default.
- W4385880244 creator A5092650120 @default.
- W4385880244 date "2023-08-01" @default.
- W4385880244 modified "2023-09-27" @default.
- W4385880244 title "Temperature Forecasting for Iwo City, Nigeria Using Statistical Models and Selected Machine Learning Algorithms" @default.
- W4385880244 cites W1974594720 @default.
- W4385880244 cites W2016866892 @default.
- W4385880244 cites W2066618068 @default.
- W4385880244 cites W2403688982 @default.
- W4385880244 cites W2517873367 @default.
- W4385880244 cites W2611772571 @default.
- W4385880244 cites W2804416042 @default.
- W4385880244 cites W2887248715 @default.
- W4385880244 cites W2996493790 @default.
- W4385880244 cites W3087124796 @default.
- W4385880244 cites W385004530 @default.
- W4385880244 cites W4281633371 @default.
- W4385880244 doi "https://doi.org/10.1088/1755-1315/1219/1/012027" @default.
- W4385880244 hasPublicationYear "2023" @default.
- W4385880244 type Work @default.
- W4385880244 citedByCount "0" @default.
- W4385880244 crossrefType "journal-article" @default.
- W4385880244 hasAuthorship W4385880244A5023394499 @default.
- W4385880244 hasAuthorship W4385880244A5034894325 @default.
- W4385880244 hasAuthorship W4385880244A5036577488 @default.
- W4385880244 hasAuthorship W4385880244A5050433082 @default.
- W4385880244 hasAuthorship W4385880244A5078004369 @default.
- W4385880244 hasAuthorship W4385880244A5092650120 @default.
- W4385880244 hasBestOaLocation W43858802441 @default.
- W4385880244 hasConcept C105795698 @default.
- W4385880244 hasConcept C11413529 @default.
- W4385880244 hasConcept C119857082 @default.
- W4385880244 hasConcept C126674687 @default.
- W4385880244 hasConcept C127313418 @default.
- W4385880244 hasConcept C143724316 @default.
- W4385880244 hasConcept C151406439 @default.
- W4385880244 hasConcept C151730666 @default.
- W4385880244 hasConcept C154945302 @default.
- W4385880244 hasConcept C22679943 @default.
- W4385880244 hasConcept C24338571 @default.
- W4385880244 hasConcept C33923547 @default.
- W4385880244 hasConcept C41008148 @default.
- W4385880244 hasConceptScore W4385880244C105795698 @default.
- W4385880244 hasConceptScore W4385880244C11413529 @default.
- W4385880244 hasConceptScore W4385880244C119857082 @default.
- W4385880244 hasConceptScore W4385880244C126674687 @default.
- W4385880244 hasConceptScore W4385880244C127313418 @default.
- W4385880244 hasConceptScore W4385880244C143724316 @default.
- W4385880244 hasConceptScore W4385880244C151406439 @default.
- W4385880244 hasConceptScore W4385880244C151730666 @default.
- W4385880244 hasConceptScore W4385880244C154945302 @default.
- W4385880244 hasConceptScore W4385880244C22679943 @default.
- W4385880244 hasConceptScore W4385880244C24338571 @default.
- W4385880244 hasConceptScore W4385880244C33923547 @default.
- W4385880244 hasConceptScore W4385880244C41008148 @default.
- W4385880244 hasIssue "1" @default.
- W4385880244 hasLocation W43858802441 @default.
- W4385880244 hasOpenAccess W4385880244 @default.
- W4385880244 hasPrimaryLocation W43858802441 @default.
- W4385880244 hasRelatedWork W1984633497 @default.
- W4385880244 hasRelatedWork W2151709428 @default.
- W4385880244 hasRelatedWork W2348653029 @default.
- W4385880244 hasRelatedWork W2362830187 @default.
- W4385880244 hasRelatedWork W2993999649 @default.
- W4385880244 hasRelatedWork W3080840844 @default.
- W4385880244 hasRelatedWork W3114389345 @default.
- W4385880244 hasRelatedWork W3119996120 @default.
- W4385880244 hasRelatedWork W4226510696 @default.
- W4385880244 hasRelatedWork W88990578 @default.
- W4385880244 hasVolume "1219" @default.
- W4385880244 isParatext "false" @default.
- W4385880244 isRetracted "false" @default.
- W4385880244 workType "article" @default.