Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385890268> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4385890268 abstract "Currently, many contexts exist where distributed learning is difficult or otherwise constrained by security and communication limitations. One common domain where this is a consideration is in Healthcare where data is often governed by data-use-ordinances like HIPAA. On the other hand, larger sample sizes and shared data models are necessary to allow models to better generalize on account of the potential for more variability and balancing underrepresented classes. Federated learning is a type of distributed learning model that allows data to be trained in a decentralized manner. This, in turn, addresses data security, privacy, and vulnerability considerations as data itself is not shared across a given learning network nodes. Three main challenges to federated learning include node data is not independent and identically distributed (iid), clients requiring high levels of communication overhead between peers, and there is the heterogeneity of different clients within a network with respect to dataset bias and size. As the field has grown, the notion of fairness in federated learning has also been introduced through novel implementations. Fairness approaches differ from the standard form of federated learning and also have distinct challenges and considerations for the healthcare domain. This paper endeavors to outline the typical lifecycle of fair federated learning in research as well as provide an updated taxonomy to account for the current state of fairness in implementations. Lastly, this paper provides added insight into the implications and challenges of implementing and supporting fairness in federated learning in the healthcare domain." @default.
- W4385890268 created "2023-08-17" @default.
- W4385890268 creator A5030268648 @default.
- W4385890268 creator A5036095202 @default.
- W4385890268 creator A5059904315 @default.
- W4385890268 date "2023-08-15" @default.
- W4385890268 modified "2023-09-27" @default.
- W4385890268 title "Fairness and Privacy in Federated Learning and Their Implications in Healthcare" @default.
- W4385890268 doi "https://doi.org/10.48550/arxiv.2308.07805" @default.
- W4385890268 hasPublicationYear "2023" @default.
- W4385890268 type Work @default.
- W4385890268 citedByCount "0" @default.
- W4385890268 crossrefType "posted-content" @default.
- W4385890268 hasAuthorship W4385890268A5030268648 @default.
- W4385890268 hasAuthorship W4385890268A5036095202 @default.
- W4385890268 hasAuthorship W4385890268A5059904315 @default.
- W4385890268 hasBestOaLocation W43858902681 @default.
- W4385890268 hasConcept C111919701 @default.
- W4385890268 hasConcept C115903868 @default.
- W4385890268 hasConcept C120314980 @default.
- W4385890268 hasConcept C134306372 @default.
- W4385890268 hasConcept C15744967 @default.
- W4385890268 hasConcept C160735492 @default.
- W4385890268 hasConcept C162324750 @default.
- W4385890268 hasConcept C19417346 @default.
- W4385890268 hasConcept C2522767166 @default.
- W4385890268 hasConcept C26713055 @default.
- W4385890268 hasConcept C2779582901 @default.
- W4385890268 hasConcept C2779960059 @default.
- W4385890268 hasConcept C2992525071 @default.
- W4385890268 hasConcept C33923547 @default.
- W4385890268 hasConcept C36503486 @default.
- W4385890268 hasConcept C41008148 @default.
- W4385890268 hasConcept C50522688 @default.
- W4385890268 hasConceptScore W4385890268C111919701 @default.
- W4385890268 hasConceptScore W4385890268C115903868 @default.
- W4385890268 hasConceptScore W4385890268C120314980 @default.
- W4385890268 hasConceptScore W4385890268C134306372 @default.
- W4385890268 hasConceptScore W4385890268C15744967 @default.
- W4385890268 hasConceptScore W4385890268C160735492 @default.
- W4385890268 hasConceptScore W4385890268C162324750 @default.
- W4385890268 hasConceptScore W4385890268C19417346 @default.
- W4385890268 hasConceptScore W4385890268C2522767166 @default.
- W4385890268 hasConceptScore W4385890268C26713055 @default.
- W4385890268 hasConceptScore W4385890268C2779582901 @default.
- W4385890268 hasConceptScore W4385890268C2779960059 @default.
- W4385890268 hasConceptScore W4385890268C2992525071 @default.
- W4385890268 hasConceptScore W4385890268C33923547 @default.
- W4385890268 hasConceptScore W4385890268C36503486 @default.
- W4385890268 hasConceptScore W4385890268C41008148 @default.
- W4385890268 hasConceptScore W4385890268C50522688 @default.
- W4385890268 hasLocation W43858902681 @default.
- W4385890268 hasOpenAccess W4385890268 @default.
- W4385890268 hasPrimaryLocation W43858902681 @default.
- W4385890268 hasRelatedWork W1485630101 @default.
- W4385890268 hasRelatedWork W1964111820 @default.
- W4385890268 hasRelatedWork W2083338789 @default.
- W4385890268 hasRelatedWork W3186277107 @default.
- W4385890268 hasRelatedWork W4206912802 @default.
- W4385890268 hasRelatedWork W4289816670 @default.
- W4385890268 hasRelatedWork W4318146637 @default.
- W4385890268 hasRelatedWork W4319453716 @default.
- W4385890268 hasRelatedWork W4320067073 @default.
- W4385890268 hasRelatedWork W4386105233 @default.
- W4385890268 isParatext "false" @default.
- W4385890268 isRetracted "false" @default.
- W4385890268 workType "article" @default.