Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385890279> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4385890279 abstract "In B2B markets, value-based pricing and selling has become an important alternative to discounting. This study outlines a modeling method that uses customer data (product offers made to each current or potential customer, features, discounts, and customer purchase decisions) to estimate a mixed logit choice model. The model is estimated via hierarchical Bayes and machine learning, delivering customer-level parameter estimates. Customer-level estimates are input into a nonlinear programming next-offer maximization problem to select optimal features and discount level for customer segments, where segments are based on loyalty and discount elasticity. The mixed logit model is integrated with economic theory (the random utility model), and it predicts both customer perceived value for and response to alternative future sales offers. The methodology can be implemented to support value-based pricing and selling efforts. Contributions to the literature include: (a) the use of customer-level parameter estimates from a mixed logit model, delivered via a hierarchical Bayes estimation procedure, to support value-based pricing decisions; (b) validation that mixed logit customer-level modeling can deliver strong predictive accuracy, not as high as random forest but comparing favorably; and (c) a nonlinear programming problem that uses customer-level mixed logit estimates to select optimal features and discounts." @default.
- W4385890279 created "2023-08-17" @default.
- W4385890279 creator A5012474202 @default.
- W4385890279 creator A5021988285 @default.
- W4385890279 creator A5038304431 @default.
- W4385890279 date "2023-08-15" @default.
- W4385890279 modified "2023-09-27" @default.
- W4385890279 title "Optimizing B2B Product Offers with Machine Learning, Mixed Logit, and Nonlinear Programming" @default.
- W4385890279 doi "https://doi.org/10.48550/arxiv.2308.07830" @default.
- W4385890279 hasPublicationYear "2023" @default.
- W4385890279 type Work @default.
- W4385890279 citedByCount "0" @default.
- W4385890279 crossrefType "posted-content" @default.
- W4385890279 hasAuthorship W4385890279A5012474202 @default.
- W4385890279 hasAuthorship W4385890279A5021988285 @default.
- W4385890279 hasAuthorship W4385890279A5038304431 @default.
- W4385890279 hasBestOaLocation W43858902791 @default.
- W4385890279 hasConcept C101276457 @default.
- W4385890279 hasConcept C117568660 @default.
- W4385890279 hasConcept C119857082 @default.
- W4385890279 hasConcept C126255220 @default.
- W4385890279 hasConcept C130721881 @default.
- W4385890279 hasConcept C140331021 @default.
- W4385890279 hasConcept C140781008 @default.
- W4385890279 hasConcept C144133560 @default.
- W4385890279 hasConcept C149782125 @default.
- W4385890279 hasConcept C151956035 @default.
- W4385890279 hasConcept C162324750 @default.
- W4385890279 hasConcept C162853370 @default.
- W4385890279 hasConcept C2524010 @default.
- W4385890279 hasConcept C2780378061 @default.
- W4385890279 hasConcept C33923547 @default.
- W4385890279 hasConcept C41008148 @default.
- W4385890279 hasConcept C42475967 @default.
- W4385890279 hasConcept C90673727 @default.
- W4385890279 hasConcept C95057490 @default.
- W4385890279 hasConceptScore W4385890279C101276457 @default.
- W4385890279 hasConceptScore W4385890279C117568660 @default.
- W4385890279 hasConceptScore W4385890279C119857082 @default.
- W4385890279 hasConceptScore W4385890279C126255220 @default.
- W4385890279 hasConceptScore W4385890279C130721881 @default.
- W4385890279 hasConceptScore W4385890279C140331021 @default.
- W4385890279 hasConceptScore W4385890279C140781008 @default.
- W4385890279 hasConceptScore W4385890279C144133560 @default.
- W4385890279 hasConceptScore W4385890279C149782125 @default.
- W4385890279 hasConceptScore W4385890279C151956035 @default.
- W4385890279 hasConceptScore W4385890279C162324750 @default.
- W4385890279 hasConceptScore W4385890279C162853370 @default.
- W4385890279 hasConceptScore W4385890279C2524010 @default.
- W4385890279 hasConceptScore W4385890279C2780378061 @default.
- W4385890279 hasConceptScore W4385890279C33923547 @default.
- W4385890279 hasConceptScore W4385890279C41008148 @default.
- W4385890279 hasConceptScore W4385890279C42475967 @default.
- W4385890279 hasConceptScore W4385890279C90673727 @default.
- W4385890279 hasConceptScore W4385890279C95057490 @default.
- W4385890279 hasLocation W43858902791 @default.
- W4385890279 hasOpenAccess W4385890279 @default.
- W4385890279 hasPrimaryLocation W43858902791 @default.
- W4385890279 hasRelatedWork W1021133854 @default.
- W4385890279 hasRelatedWork W1520631868 @default.
- W4385890279 hasRelatedWork W1999711686 @default.
- W4385890279 hasRelatedWork W2124901150 @default.
- W4385890279 hasRelatedWork W2191624819 @default.
- W4385890279 hasRelatedWork W2334715211 @default.
- W4385890279 hasRelatedWork W234952215 @default.
- W4385890279 hasRelatedWork W2912394473 @default.
- W4385890279 hasRelatedWork W3122213245 @default.
- W4385890279 hasRelatedWork W4299465595 @default.
- W4385890279 isParatext "false" @default.
- W4385890279 isRetracted "false" @default.
- W4385890279 workType "article" @default.