Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385896237> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4385896237 abstract "<sec> <title>BACKGROUND</title> Individual factors related to performance in age group triathletes competing in different race distances have been explored in scientific literature. However, only a few studies have been conducted using machine learning (ML) predictive models to explore the im-portance of those individual factors. </sec> <sec> <title>OBJECTIVE</title> This study intended to build and analyze machine learning regression models that pre-dict the performance of IRONMAN® 70.3 age group triathletes, considering sex, age, country of origin, and event location as predictive factors. </sec> <sec> <title>METHODS</title> A total of 823,464 finishers´ records (625,398 men and 198,066 women) of IRONMAN® 70.3 age group triathletes from 240 different countries and participating in 197 different events in 183 different locations between 2004 and 2020 were analyzed. The triathletes’ gender, age, country of origin, event location and year, and race finish times were thus obtained and considered for the study. Four different ML regression models were built to predict the triathletes’ race times from their age, gender, country of origin, and race location. The model with the best performance was then selected and further analyzed using model-agnostic interpretability tools to understand which factors would contribute most to the model predictions. </sec> <sec> <title>RESULTS</title> The Random Forest Regressor model obtained the best predictive score. This model's partial dependence plots indicated that men under 30 years, from Switzerland or Denmark, competing in IRONMAN®70.3 Austria/St. Polten, IRONMAN® 70.3 Switzerland, IRONMAN® 70.3 Sunshine Coast, and IRONMAN® 70.3 Busselton presented the best performance. </sec> <sec> <title>CONCLUSIONS</title> Our results prove that ML models can be used to look into the complex, non-linear interactions between the factors that influence performance and gain insights that can help IRONMAN® 70.3 age group triathletes better plan their races. </sec>" @default.
- W4385896237 created "2023-08-18" @default.
- W4385896237 creator A5002932826 @default.
- W4385896237 creator A5015669294 @default.
- W4385896237 creator A5026034579 @default.
- W4385896237 creator A5032513173 @default.
- W4385896237 creator A5065654348 @default.
- W4385896237 creator A5065703571 @default.
- W4385896237 creator A5065770290 @default.
- W4385896237 creator A5065848555 @default.
- W4385896237 creator A5070358174 @default.
- W4385896237 date "2023-08-01" @default.
- W4385896237 modified "2023-10-18" @default.
- W4385896237 title "Modeling performance in IRONMAN® 70.3 age group triathletes using a machine learning model (Preprint)" @default.
- W4385896237 cites W1921504237 @default.
- W4385896237 cites W1975612808 @default.
- W4385896237 cites W1999477787 @default.
- W4385896237 cites W2016989489 @default.
- W4385896237 cites W2019447529 @default.
- W4385896237 cites W2046873893 @default.
- W4385896237 cites W2048171016 @default.
- W4385896237 cites W2060672684 @default.
- W4385896237 cites W2081657379 @default.
- W4385896237 cites W2088019277 @default.
- W4385896237 cites W2101499612 @default.
- W4385896237 cites W2105415456 @default.
- W4385896237 cites W2111971403 @default.
- W4385896237 cites W2120061262 @default.
- W4385896237 cites W2132241966 @default.
- W4385896237 cites W2589267665 @default.
- W4385896237 cites W2611456734 @default.
- W4385896237 cites W2737335120 @default.
- W4385896237 cites W2792148314 @default.
- W4385896237 cites W2915221788 @default.
- W4385896237 cites W2943056011 @default.
- W4385896237 cites W2955385627 @default.
- W4385896237 cites W2962607093 @default.
- W4385896237 cites W2973501674 @default.
- W4385896237 cites W2985317936 @default.
- W4385896237 cites W2987956390 @default.
- W4385896237 cites W3015442306 @default.
- W4385896237 cites W3029727223 @default.
- W4385896237 cites W3031136790 @default.
- W4385896237 cites W3041191715 @default.
- W4385896237 cites W3045848773 @default.
- W4385896237 cites W3099647999 @default.
- W4385896237 cites W3110721760 @default.
- W4385896237 cites W3126282473 @default.
- W4385896237 cites W3195777569 @default.
- W4385896237 cites W4224940928 @default.
- W4385896237 cites W4282937597 @default.
- W4385896237 cites W4304163190 @default.
- W4385896237 cites W4310887949 @default.
- W4385896237 cites W4317937558 @default.
- W4385896237 doi "https://doi.org/10.2196/preprints.51455" @default.
- W4385896237 hasPublicationYear "2023" @default.
- W4385896237 type Work @default.
- W4385896237 citedByCount "0" @default.
- W4385896237 crossrefType "posted-content" @default.
- W4385896237 hasAuthorship W4385896237A5002932826 @default.
- W4385896237 hasAuthorship W4385896237A5015669294 @default.
- W4385896237 hasAuthorship W4385896237A5026034579 @default.
- W4385896237 hasAuthorship W4385896237A5032513173 @default.
- W4385896237 hasAuthorship W4385896237A5065654348 @default.
- W4385896237 hasAuthorship W4385896237A5065703571 @default.
- W4385896237 hasAuthorship W4385896237A5065770290 @default.
- W4385896237 hasAuthorship W4385896237A5065848555 @default.
- W4385896237 hasAuthorship W4385896237A5070358174 @default.
- W4385896237 hasConcept C144024400 @default.
- W4385896237 hasConcept C149923435 @default.
- W4385896237 hasConcept C205649164 @default.
- W4385896237 hasConcept C71924100 @default.
- W4385896237 hasConceptScore W4385896237C144024400 @default.
- W4385896237 hasConceptScore W4385896237C149923435 @default.
- W4385896237 hasConceptScore W4385896237C205649164 @default.
- W4385896237 hasConceptScore W4385896237C71924100 @default.
- W4385896237 hasLocation W43858962371 @default.
- W4385896237 hasOpenAccess W4385896237 @default.
- W4385896237 hasPrimaryLocation W43858962371 @default.
- W4385896237 hasRelatedWork W1506200166 @default.
- W4385896237 hasRelatedWork W1995515455 @default.
- W4385896237 hasRelatedWork W2048182022 @default.
- W4385896237 hasRelatedWork W2080531066 @default.
- W4385896237 hasRelatedWork W2604872355 @default.
- W4385896237 hasRelatedWork W2748952813 @default.
- W4385896237 hasRelatedWork W2899084033 @default.
- W4385896237 hasRelatedWork W3031052312 @default.
- W4385896237 hasRelatedWork W3032375762 @default.
- W4385896237 hasRelatedWork W3108674512 @default.
- W4385896237 isParatext "false" @default.
- W4385896237 isRetracted "false" @default.
- W4385896237 workType "article" @default.