Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385897966> ?p ?o ?g. }
- W4385897966 endingPage "175015" @default.
- W4385897966 startingPage "175015" @default.
- W4385897966 abstract "Abstract Background . Creating a clinically acceptable plan in the time-sensitive clinic workflow of brachytherapy is challenging. Deep learning-based dose prediction techniques have been reported as promising solutions with high efficiency and accuracy. However, current dose prediction studies mainly target EBRT which are inappropriate for brachytherapy, the model designed specifically for brachytherapy has not yet well-established. Purpose . To predict dose distribution in brachytherapy using a novel Squeeze and Excitation Attention Net (SE_AN) model. Method . We hypothesized the tracks of 192 Ir inside applicators are essential for brachytherapy dose prediction. To emphasize the applicator contribution, a novel SE module was integrated into a Cascaded UNet to recalibrate informative features and suppress less useful ones. The Cascaded UNet consists of two stacked UNets, with the first designed to predict coarse dose distribution and the second added for fine-tuning 250 cases including all typical clinical applicators were studied, including vaginal, tandem and ovoid, multi-channel, and free needle applicators. The developed SE_AN was subsequently compared to the classic UNet and classic Cascaded UNet (without SE module) models. The model performance was evaluated by comparing the predicted dose against the clinically approved plans using mean absolute error (MAE) of DVH metrics, including D 2cc and D 90% . Results . The MAEs of DVH metrics demonstrated that SE_AN accurately predicted the dose with 0.37 ± 0.25 difference for HRCTV D 90% , 0.23 ± 0.14 difference for bladder D 2cc , and 0.28 ± 0.20 difference for rectum D 2cc . In comparison studies, UNet achieved 0.34 ± 0.24 for HRCTV, 0.25 ± 0.20 for bladder, 0.25 ± 0.21 for rectum, and Cascaded UNet achieved 0.42 ± 0.31 for HRCTV, 0.24 ± 0.19 for bladder, 0.23 ± 0.19 for rectum. Conclusion . We successfully developed a method specifically for 3D brachytherapy dose prediction. Our model demonstrated comparable performance to clinical plans generated by experienced dosimetrists. The developed technique is expected to improve the standardization and quality control of brachytherapy treatment planning." @default.
- W4385897966 created "2023-08-18" @default.
- W4385897966 creator A5010778977 @default.
- W4385897966 creator A5021557811 @default.
- W4385897966 creator A5030009997 @default.
- W4385897966 creator A5052436880 @default.
- W4385897966 creator A5060774367 @default.
- W4385897966 creator A5071696276 @default.
- W4385897966 creator A5077660882 @default.
- W4385897966 creator A5080361568 @default.
- W4385897966 date "2023-08-17" @default.
- W4385897966 modified "2023-09-25" @default.
- W4385897966 title "Deep learning-based dose map prediction for high-dose-rate brachytherapy" @default.
- W4385897966 cites W1513394049 @default.
- W4385897966 cites W1963932209 @default.
- W4385897966 cites W2027349401 @default.
- W4385897966 cites W2033905828 @default.
- W4385897966 cites W2069905590 @default.
- W4385897966 cites W2164891366 @default.
- W4385897966 cites W2219768249 @default.
- W4385897966 cites W2348967966 @default.
- W4385897966 cites W2530107623 @default.
- W4385897966 cites W2594600577 @default.
- W4385897966 cites W2745207821 @default.
- W4385897966 cites W2752782242 @default.
- W4385897966 cites W2781561490 @default.
- W4385897966 cites W2783123637 @default.
- W4385897966 cites W2790671491 @default.
- W4385897966 cites W2795777898 @default.
- W4385897966 cites W2808836407 @default.
- W4385897966 cites W2809382554 @default.
- W4385897966 cites W2898662037 @default.
- W4385897966 cites W2898990400 @default.
- W4385897966 cites W3014705076 @default.
- W4385897966 cites W3018681411 @default.
- W4385897966 cites W3026792403 @default.
- W4385897966 cites W3028573462 @default.
- W4385897966 cites W3034115134 @default.
- W4385897966 cites W3062921733 @default.
- W4385897966 cites W3085467444 @default.
- W4385897966 cites W3090335265 @default.
- W4385897966 cites W3094541895 @default.
- W4385897966 cites W3105594088 @default.
- W4385897966 cites W3107111811 @default.
- W4385897966 cites W3124760540 @default.
- W4385897966 cites W3126828726 @default.
- W4385897966 cites W3131117821 @default.
- W4385897966 cites W3132511447 @default.
- W4385897966 cites W3138296922 @default.
- W4385897966 cites W3164789060 @default.
- W4385897966 cites W3171527745 @default.
- W4385897966 cites W3176637324 @default.
- W4385897966 cites W3184106630 @default.
- W4385897966 cites W3191774858 @default.
- W4385897966 cites W3217359438 @default.
- W4385897966 cites W4200048078 @default.
- W4385897966 cites W4220664278 @default.
- W4385897966 cites W4229443428 @default.
- W4385897966 cites W4294636662 @default.
- W4385897966 cites W4319027763 @default.
- W4385897966 cites W4323826283 @default.
- W4385897966 doi "https://doi.org/10.1088/1361-6560/acecd2" @default.
- W4385897966 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37589292" @default.
- W4385897966 hasPublicationYear "2023" @default.
- W4385897966 type Work @default.
- W4385897966 citedByCount "0" @default.
- W4385897966 crossrefType "journal-article" @default.
- W4385897966 hasAuthorship W4385897966A5010778977 @default.
- W4385897966 hasAuthorship W4385897966A5021557811 @default.
- W4385897966 hasAuthorship W4385897966A5030009997 @default.
- W4385897966 hasAuthorship W4385897966A5052436880 @default.
- W4385897966 hasAuthorship W4385897966A5060774367 @default.
- W4385897966 hasAuthorship W4385897966A5071696276 @default.
- W4385897966 hasAuthorship W4385897966A5077660882 @default.
- W4385897966 hasAuthorship W4385897966A5080361568 @default.
- W4385897966 hasBestOaLocation W43858979661 @default.
- W4385897966 hasConcept C126838900 @default.
- W4385897966 hasConcept C136229726 @default.
- W4385897966 hasConcept C201645570 @default.
- W4385897966 hasConcept C2777416452 @default.
- W4385897966 hasConcept C2989005 @default.
- W4385897966 hasConcept C41008148 @default.
- W4385897966 hasConcept C509974204 @default.
- W4385897966 hasConcept C71924100 @default.
- W4385897966 hasConceptScore W4385897966C126838900 @default.
- W4385897966 hasConceptScore W4385897966C136229726 @default.
- W4385897966 hasConceptScore W4385897966C201645570 @default.
- W4385897966 hasConceptScore W4385897966C2777416452 @default.
- W4385897966 hasConceptScore W4385897966C2989005 @default.
- W4385897966 hasConceptScore W4385897966C41008148 @default.
- W4385897966 hasConceptScore W4385897966C509974204 @default.
- W4385897966 hasConceptScore W4385897966C71924100 @default.
- W4385897966 hasIssue "17" @default.
- W4385897966 hasLocation W43858979661 @default.
- W4385897966 hasLocation W43858979662 @default.
- W4385897966 hasOpenAccess W4385897966 @default.
- W4385897966 hasPrimaryLocation W43858979661 @default.
- W4385897966 hasRelatedWork W2016850865 @default.