Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385938268> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4385938268 endingPage "1" @default.
- W4385938268 startingPage "1" @default.
- W4385938268 abstract "Regular maintenance and testing of high voltage assets is important for avoiding outages. Measurement of partial discharges (PD) is commonly employed to monitor the health of the insulation materials of such assets, and the detection of the PD sources would help justify remedial actions such as inspection and repair. Before classifying the PD sources, the identification of the number of PD sources is necessary (clustering of the PD pulses). Different clustering techniques have been used for this purpose such as T-F maps, K-means clustering and principal component analysis. However, there are limitations in these techniques in regards to the additional information that these algorithms need. For example, the number of clusters and the minimum distance between data points must be assumed in some algorithms. In order to overcome the mentioned limitations, a robust unsupervised deep learning model is proposed for unsupervised clustering, based on a convolutional autoencoder and an adaptive clustering technique. In a laboratory setup, defects are introduced to a generator stator bar, simulating common PD sources, and PD-induced pulses in the ground connection of the bar are measured. The inputs to the deep learning model are the unlabelled, time-series PD pulses, and the output is the predicted number of partial discharge sources. The proposed system showed better prediction of the number of PD sources compared to the existing techniques which require human judgment. In addition, the proposed system demonstrated immunity to noise, where additive white Gaussian noise is added artificially to the measured PD waveforms." @default.
- W4385938268 created "2023-08-18" @default.
- W4385938268 creator A5012915893 @default.
- W4385938268 creator A5017144751 @default.
- W4385938268 creator A5040493309 @default.
- W4385938268 creator A5042544444 @default.
- W4385938268 creator A5043439829 @default.
- W4385938268 date "2023-01-01" @default.
- W4385938268 modified "2023-10-16" @default.
- W4385938268 title "Unsupervised Deep Learning for Detecting Number of Partial Discharge Sources in Stator Bars" @default.
- W4385938268 doi "https://doi.org/10.1109/tdei.2023.3306324" @default.
- W4385938268 hasPublicationYear "2023" @default.
- W4385938268 type Work @default.
- W4385938268 citedByCount "0" @default.
- W4385938268 crossrefType "journal-article" @default.
- W4385938268 hasAuthorship W4385938268A5012915893 @default.
- W4385938268 hasAuthorship W4385938268A5017144751 @default.
- W4385938268 hasAuthorship W4385938268A5040493309 @default.
- W4385938268 hasAuthorship W4385938268A5042544444 @default.
- W4385938268 hasAuthorship W4385938268A5043439829 @default.
- W4385938268 hasConcept C101738243 @default.
- W4385938268 hasConcept C108583219 @default.
- W4385938268 hasConcept C112633086 @default.
- W4385938268 hasConcept C115961682 @default.
- W4385938268 hasConcept C119599485 @default.
- W4385938268 hasConcept C119857082 @default.
- W4385938268 hasConcept C124101348 @default.
- W4385938268 hasConcept C127413603 @default.
- W4385938268 hasConcept C130143024 @default.
- W4385938268 hasConcept C153180895 @default.
- W4385938268 hasConcept C154945302 @default.
- W4385938268 hasConcept C165801399 @default.
- W4385938268 hasConcept C197424946 @default.
- W4385938268 hasConcept C2776529397 @default.
- W4385938268 hasConcept C41008148 @default.
- W4385938268 hasConcept C73555534 @default.
- W4385938268 hasConcept C76155785 @default.
- W4385938268 hasConcept C8038995 @default.
- W4385938268 hasConcept C99498987 @default.
- W4385938268 hasConceptScore W4385938268C101738243 @default.
- W4385938268 hasConceptScore W4385938268C108583219 @default.
- W4385938268 hasConceptScore W4385938268C112633086 @default.
- W4385938268 hasConceptScore W4385938268C115961682 @default.
- W4385938268 hasConceptScore W4385938268C119599485 @default.
- W4385938268 hasConceptScore W4385938268C119857082 @default.
- W4385938268 hasConceptScore W4385938268C124101348 @default.
- W4385938268 hasConceptScore W4385938268C127413603 @default.
- W4385938268 hasConceptScore W4385938268C130143024 @default.
- W4385938268 hasConceptScore W4385938268C153180895 @default.
- W4385938268 hasConceptScore W4385938268C154945302 @default.
- W4385938268 hasConceptScore W4385938268C165801399 @default.
- W4385938268 hasConceptScore W4385938268C197424946 @default.
- W4385938268 hasConceptScore W4385938268C2776529397 @default.
- W4385938268 hasConceptScore W4385938268C41008148 @default.
- W4385938268 hasConceptScore W4385938268C73555534 @default.
- W4385938268 hasConceptScore W4385938268C76155785 @default.
- W4385938268 hasConceptScore W4385938268C8038995 @default.
- W4385938268 hasConceptScore W4385938268C99498987 @default.
- W4385938268 hasFunder F4320311952 @default.
- W4385938268 hasFunder F4320334593 @default.
- W4385938268 hasLocation W43859382681 @default.
- W4385938268 hasOpenAccess W4385938268 @default.
- W4385938268 hasPrimaryLocation W43859382681 @default.
- W4385938268 hasRelatedWork W2114500437 @default.
- W4385938268 hasRelatedWork W2159052453 @default.
- W4385938268 hasRelatedWork W2369217162 @default.
- W4385938268 hasRelatedWork W2393409683 @default.
- W4385938268 hasRelatedWork W2566616303 @default.
- W4385938268 hasRelatedWork W2770818364 @default.
- W4385938268 hasRelatedWork W2965146396 @default.
- W4385938268 hasRelatedWork W2997921738 @default.
- W4385938268 hasRelatedWork W3013693939 @default.
- W4385938268 hasRelatedWork W4312416532 @default.
- W4385938268 isParatext "false" @default.
- W4385938268 isRetracted "false" @default.
- W4385938268 workType "article" @default.