Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385949745> ?p ?o ?g. }
- W4385949745 abstract "We consider a quantum ring of a certain radius $R$ built from a sheet of the $ensuremath{alpha}text{ensuremath{-}}{T}_{3}$ lattice and solve for its spectral properties in the presence of an external magnetic field. The energy spectrum consists of a conduction band, a valence band, and a zero-energy flat band, all having a number of discrete levels which can be characterized by the angular momentum quantum number $m$. The energy levels in the flat band are infinitely degenerate irrespective of the value of $ensuremath{alpha}$. We reveal a twofold degeneracy of the levels in the conduction band as well as in the valence band for $ensuremath{alpha}=0$ and $ensuremath{alpha}=1$. However, the $m=0$ level for $ensuremath{alpha}=1$ is an exception. Corresponding to an intermediate value of $ensuremath{alpha}$, namely, $0<ensuremath{alpha}<1$, the energy levels become nondegenerate. The scenario for the degeneracy of the energy levels remains unaltered when the ring is threaded by a magnetic flux which is an integer multiple of the flux quantum. We comment on the energy levels which are relevant for low-energy physics by studying their radius dependence in the presence of a magnetic field. We also calculate the persistent current, which exhibits quantum oscillations as a function of the magnetic field with a period of one flux quantum at a particular Dirac point, which is often referred to as a valley. The total persistent current comprising the contributions from both the valleys is zero in the cases corresponding to $ensuremath{alpha}=0$ and $ensuremath{alpha}=1$. However, the total current oscillates with a periodicity of one flux quantum for any intermediate value of $ensuremath{alpha}$. We also explore the effect of a mass term (that breaks the sublattice symmetry) in the Hamiltonian. In the absence of a magnetic field, the energy levels in the flat band become dispersive, except for the $m=0$ level in the case of $ensuremath{alpha}=1$. In the presence of the field, each of the flat band levels becomes dispersive for any $ensuremath{alpha}ensuremath{ne}0$. Finally, we also see the effect of the mass term on the behavior of the persistent current, which shows a periodicity of one flux quantum, but the total current remains finite for all values of $ensuremath{alpha}$." @default.
- W4385949745 created "2023-08-18" @default.
- W4385949745 creator A5067657966 @default.
- W4385949745 creator A5067948928 @default.
- W4385949745 creator A5077989255 @default.
- W4385949745 date "2023-08-17" @default.
- W4385949745 modified "2023-10-05" @default.
- W4385949745 title "Effect of magnetic field on the electronic properties of an <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML><mml:mi>α</mml:mi><mml:mtext>−</mml:mtext><mml:msub><mml:mi>T</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> ring" @default.
- W4385949745 cites W1512882214 @default.
- W4385949745 cites W1608637350 @default.
- W4385949745 cites W1780908631 @default.
- W4385949745 cites W1789401825 @default.
- W4385949745 cites W1967051357 @default.
- W4385949745 cites W1971744807 @default.
- W4385949745 cites W1976136032 @default.
- W4385949745 cites W1982886467 @default.
- W4385949745 cites W1984654887 @default.
- W4385949745 cites W1987588774 @default.
- W4385949745 cites W1991786927 @default.
- W4385949745 cites W1996096750 @default.
- W4385949745 cites W1996140265 @default.
- W4385949745 cites W2001814874 @default.
- W4385949745 cites W2002152088 @default.
- W4385949745 cites W2005389518 @default.
- W4385949745 cites W2006647652 @default.
- W4385949745 cites W2012518625 @default.
- W4385949745 cites W2016426916 @default.
- W4385949745 cites W2017744499 @default.
- W4385949745 cites W2027648097 @default.
- W4385949745 cites W2028948400 @default.
- W4385949745 cites W2029997501 @default.
- W4385949745 cites W2033486741 @default.
- W4385949745 cites W2041408272 @default.
- W4385949745 cites W2052769230 @default.
- W4385949745 cites W2058122340 @default.
- W4385949745 cites W2065590638 @default.
- W4385949745 cites W2066066490 @default.
- W4385949745 cites W2067180195 @default.
- W4385949745 cites W2067297890 @default.
- W4385949745 cites W2067695897 @default.
- W4385949745 cites W2069917298 @default.
- W4385949745 cites W2077726480 @default.
- W4385949745 cites W2079203222 @default.
- W4385949745 cites W2090979164 @default.
- W4385949745 cites W2091929524 @default.
- W4385949745 cites W2093818945 @default.
- W4385949745 cites W2093871221 @default.
- W4385949745 cites W2101365750 @default.
- W4385949745 cites W2109570354 @default.
- W4385949745 cites W2118492507 @default.
- W4385949745 cites W2125284466 @default.
- W4385949745 cites W2143543218 @default.
- W4385949745 cites W2155422709 @default.
- W4385949745 cites W2166276923 @default.
- W4385949745 cites W2168036425 @default.
- W4385949745 cites W2265045908 @default.
- W4385949745 cites W2323509983 @default.
- W4385949745 cites W2341961777 @default.
- W4385949745 cites W2409374953 @default.
- W4385949745 cites W2415940771 @default.
- W4385949745 cites W2461204813 @default.
- W4385949745 cites W2570250268 @default.
- W4385949745 cites W2684292567 @default.
- W4385949745 cites W2725824110 @default.
- W4385949745 cites W2784086177 @default.
- W4385949745 cites W2809070079 @default.
- W4385949745 cites W2891020856 @default.
- W4385949745 cites W2908089501 @default.
- W4385949745 cites W2914787781 @default.
- W4385949745 cites W2963139017 @default.
- W4385949745 cites W2966159127 @default.
- W4385949745 cites W2998283395 @default.
- W4385949745 cites W3003192155 @default.
- W4385949745 cites W3014020513 @default.
- W4385949745 cites W3027743857 @default.
- W4385949745 cites W3033325958 @default.
- W4385949745 cites W3034619579 @default.
- W4385949745 cites W3037996174 @default.
- W4385949745 cites W3046028956 @default.
- W4385949745 cites W3106379635 @default.
- W4385949745 cites W3124895462 @default.
- W4385949745 cites W3130318284 @default.
- W4385949745 cites W3217411394 @default.
- W4385949745 cites W4200365592 @default.
- W4385949745 cites W4214874284 @default.
- W4385949745 cites W4220697544 @default.
- W4385949745 cites W4283259996 @default.
- W4385949745 cites W4312092865 @default.
- W4385949745 cites W4319946235 @default.
- W4385949745 cites W753743466 @default.
- W4385949745 doi "https://doi.org/10.1103/physrevb.108.085423" @default.
- W4385949745 hasPublicationYear "2023" @default.
- W4385949745 type Work @default.
- W4385949745 citedByCount "0" @default.
- W4385949745 crossrefType "journal-article" @default.
- W4385949745 hasAuthorship W4385949745A5067657966 @default.
- W4385949745 hasAuthorship W4385949745A5067948928 @default.
- W4385949745 hasAuthorship W4385949745A5077989255 @default.
- W4385949745 hasBestOaLocation W43859497452 @default.
- W4385949745 hasConcept C115260700 @default.