Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385951290> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4385951290 abstract "Abstract Deep learning techniques, one of these machine learning techniques, are also at a very important point. Thanks to the classification made with deep learning techniques, high accuracy rates can be obtained for cancer diagnosis and faster results can be obtained. In this study, VGG19 network architecture, one of the deep learning methods, was used to classify mammogram images. In addition, image equalization and image filtering methods were applied to the images used. In this way, it was also determined which method achieved higher accuracy when the image filtering and image synchronization methods used were run together with the VGG19 deep learning network architecture. The combination of CLAHE histogram equalization and VGG19 deep learning network gave the highest accuracy. The accuracy rate of the training data in the created network is 99.82%. In addition, the loss rate of the training data in the network is 0.76% and the validation rate of the test data in the network is 99.63%. The number of correct positive images is 796, the number of false positive images is 0, the number of correct negative images is 798, and the number of false negative images is 6. These image numbers belong to the test data. The number of correctly classified images in the test data is 1594. These values are very good values for classification of mammogram images." @default.
- W4385951290 created "2023-08-18" @default.
- W4385951290 creator A5003461185 @default.
- W4385951290 creator A5054573822 @default.
- W4385951290 date "2023-08-17" @default.
- W4385951290 modified "2023-10-05" @default.
- W4385951290 title "Breast Cancer Detection by Using VGG19 Deep Learning Network with Image Filtering and Histogram Equalization Methods" @default.
- W4385951290 cites W2154566417 @default.
- W4385951290 cites W2916845318 @default.
- W4385951290 cites W2921877691 @default.
- W4385951290 cites W3048581266 @default.
- W4385951290 cites W3096695019 @default.
- W4385951290 cites W3118741877 @default.
- W4385951290 cites W3123982987 @default.
- W4385951290 cites W3144883044 @default.
- W4385951290 doi "https://doi.org/10.21203/rs.3.rs-3248009/v1" @default.
- W4385951290 hasPublicationYear "2023" @default.
- W4385951290 type Work @default.
- W4385951290 citedByCount "0" @default.
- W4385951290 crossrefType "posted-content" @default.
- W4385951290 hasAuthorship W4385951290A5003461185 @default.
- W4385951290 hasAuthorship W4385951290A5054573822 @default.
- W4385951290 hasBestOaLocation W43859512901 @default.
- W4385951290 hasConcept C108583219 @default.
- W4385951290 hasConcept C115961682 @default.
- W4385951290 hasConcept C136943445 @default.
- W4385951290 hasConcept C153180895 @default.
- W4385951290 hasConcept C154945302 @default.
- W4385951290 hasConcept C16910744 @default.
- W4385951290 hasConcept C180462255 @default.
- W4385951290 hasConcept C193415008 @default.
- W4385951290 hasConcept C199360897 @default.
- W4385951290 hasConcept C30387639 @default.
- W4385951290 hasConcept C38652104 @default.
- W4385951290 hasConcept C41008148 @default.
- W4385951290 hasConcept C50644808 @default.
- W4385951290 hasConcept C53533937 @default.
- W4385951290 hasConcept C9417928 @default.
- W4385951290 hasConcept C95922358 @default.
- W4385951290 hasConceptScore W4385951290C108583219 @default.
- W4385951290 hasConceptScore W4385951290C115961682 @default.
- W4385951290 hasConceptScore W4385951290C136943445 @default.
- W4385951290 hasConceptScore W4385951290C153180895 @default.
- W4385951290 hasConceptScore W4385951290C154945302 @default.
- W4385951290 hasConceptScore W4385951290C16910744 @default.
- W4385951290 hasConceptScore W4385951290C180462255 @default.
- W4385951290 hasConceptScore W4385951290C193415008 @default.
- W4385951290 hasConceptScore W4385951290C199360897 @default.
- W4385951290 hasConceptScore W4385951290C30387639 @default.
- W4385951290 hasConceptScore W4385951290C38652104 @default.
- W4385951290 hasConceptScore W4385951290C41008148 @default.
- W4385951290 hasConceptScore W4385951290C50644808 @default.
- W4385951290 hasConceptScore W4385951290C53533937 @default.
- W4385951290 hasConceptScore W4385951290C9417928 @default.
- W4385951290 hasConceptScore W4385951290C95922358 @default.
- W4385951290 hasLocation W43859512901 @default.
- W4385951290 hasOpenAccess W4385951290 @default.
- W4385951290 hasPrimaryLocation W43859512901 @default.
- W4385951290 hasRelatedWork W2162593906 @default.
- W4385951290 hasRelatedWork W2165341978 @default.
- W4385951290 hasRelatedWork W2302472796 @default.
- W4385951290 hasRelatedWork W2333844802 @default.
- W4385951290 hasRelatedWork W2376822833 @default.
- W4385951290 hasRelatedWork W2385217229 @default.
- W4385951290 hasRelatedWork W2387482914 @default.
- W4385951290 hasRelatedWork W2393164332 @default.
- W4385951290 hasRelatedWork W2604503469 @default.
- W4385951290 hasRelatedWork W4319781082 @default.
- W4385951290 isParatext "false" @default.
- W4385951290 isRetracted "false" @default.
- W4385951290 workType "article" @default.