Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385953984> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4385953984 abstract "Abstract The cities should improve their sustainability to meet the many objectives outlined in the sustainable development goals. For this purpose, water leakages directly affect consumers' and water companies' financial and environmentally sustainable performance, and water leakages are essential factors in drinking water. The leakage detection techniques are unpractical and inaccurate, using the traditional leakage-detection method. This study proposes that the Adaptive Neuro-Fuzzy Inference System (ANFIS) is modeled for the leakage estimation for two different districted metered areas of Sakarya in Turkey. Three different input data, minimum flow ratio, maximum flow ratio, and average flow ratio in the range of [15.4, 29.2], [41.4, 61], and [31.1, 45.2], respectively, have been determined as the input data for the ANFIS. The output of the ANFIS model is used as the leakage ratio (%) parameter. The required data for the training (174 data) and testing (173 data) processes have been gathered from the experimental study. Some parameters which affect the ANFIS training performance, such as the number of membership functions and training cycle, are investigated for different simulation cases. Consequently, it is proven that the ANFIS has a very high prediction performance of water leakage with R 2 0.994 and MSE 4.63. Moreover, the performance of the ANFIS has been compared with that of the artificial neural network (ANN) in the case of leakage detection, and it has been shown that the training and testing performance of the ANFIS is better than that ANN with a ratio of 13.6% and 17.02%, respectively." @default.
- W4385953984 created "2023-08-18" @default.
- W4385953984 creator A5012529207 @default.
- W4385953984 creator A5019727084 @default.
- W4385953984 creator A5025193906 @default.
- W4385953984 creator A5047070962 @default.
- W4385953984 date "2023-08-17" @default.
- W4385953984 modified "2023-10-05" @default.
- W4385953984 title "Leakage Detection in Water Distribution Networks using Adaptive Neuro-Fuzzy Intelligent Software and Artificial Neural Network with Experimental Validations" @default.
- W4385953984 cites W1970919611 @default.
- W4385953984 cites W1998358567 @default.
- W4385953984 cites W2019207321 @default.
- W4385953984 cites W2020643482 @default.
- W4385953984 cites W2024407210 @default.
- W4385953984 cites W2041408086 @default.
- W4385953984 cites W2094044496 @default.
- W4385953984 cites W2115350352 @default.
- W4385953984 cites W2132008208 @default.
- W4385953984 cites W2277017170 @default.
- W4385953984 cites W2291414863 @default.
- W4385953984 cites W2341309435 @default.
- W4385953984 cites W2404426771 @default.
- W4385953984 cites W2550549234 @default.
- W4385953984 cites W2736705761 @default.
- W4385953984 cites W2789269486 @default.
- W4385953984 cites W2789338949 @default.
- W4385953984 cites W2791475926 @default.
- W4385953984 cites W2792406454 @default.
- W4385953984 cites W2792912725 @default.
- W4385953984 cites W2896902761 @default.
- W4385953984 cites W2897846169 @default.
- W4385953984 cites W2902948425 @default.
- W4385953984 cites W2908940112 @default.
- W4385953984 cites W2918715437 @default.
- W4385953984 cites W2993278014 @default.
- W4385953984 cites W2995269589 @default.
- W4385953984 cites W3047716589 @default.
- W4385953984 cites W3093390579 @default.
- W4385953984 cites W3095396757 @default.
- W4385953984 cites W3104386124 @default.
- W4385953984 cites W3106112785 @default.
- W4385953984 cites W3123095171 @default.
- W4385953984 cites W3124171966 @default.
- W4385953984 cites W3127668655 @default.
- W4385953984 cites W3193568390 @default.
- W4385953984 cites W4205548481 @default.
- W4385953984 doi "https://doi.org/10.21203/rs.3.rs-2037438/v1" @default.
- W4385953984 hasPublicationYear "2023" @default.
- W4385953984 type Work @default.
- W4385953984 citedByCount "0" @default.
- W4385953984 crossrefType "posted-content" @default.
- W4385953984 hasAuthorship W4385953984A5012529207 @default.
- W4385953984 hasAuthorship W4385953984A5019727084 @default.
- W4385953984 hasAuthorship W4385953984A5025193906 @default.
- W4385953984 hasAuthorship W4385953984A5047070962 @default.
- W4385953984 hasBestOaLocation W43859539841 @default.
- W4385953984 hasConcept C119857082 @default.
- W4385953984 hasConcept C124101348 @default.
- W4385953984 hasConcept C139719470 @default.
- W4385953984 hasConcept C154945302 @default.
- W4385953984 hasConcept C162324750 @default.
- W4385953984 hasConcept C186108316 @default.
- W4385953984 hasConcept C195975749 @default.
- W4385953984 hasConcept C2777042071 @default.
- W4385953984 hasConcept C2988105877 @default.
- W4385953984 hasConcept C41008148 @default.
- W4385953984 hasConcept C50644808 @default.
- W4385953984 hasConcept C58166 @default.
- W4385953984 hasConceptScore W4385953984C119857082 @default.
- W4385953984 hasConceptScore W4385953984C124101348 @default.
- W4385953984 hasConceptScore W4385953984C139719470 @default.
- W4385953984 hasConceptScore W4385953984C154945302 @default.
- W4385953984 hasConceptScore W4385953984C162324750 @default.
- W4385953984 hasConceptScore W4385953984C186108316 @default.
- W4385953984 hasConceptScore W4385953984C195975749 @default.
- W4385953984 hasConceptScore W4385953984C2777042071 @default.
- W4385953984 hasConceptScore W4385953984C2988105877 @default.
- W4385953984 hasConceptScore W4385953984C41008148 @default.
- W4385953984 hasConceptScore W4385953984C50644808 @default.
- W4385953984 hasConceptScore W4385953984C58166 @default.
- W4385953984 hasLocation W43859539841 @default.
- W4385953984 hasOpenAccess W4385953984 @default.
- W4385953984 hasPrimaryLocation W43859539841 @default.
- W4385953984 hasRelatedWork W2008638559 @default.
- W4385953984 hasRelatedWork W2389800468 @default.
- W4385953984 hasRelatedWork W2905122356 @default.
- W4385953984 hasRelatedWork W2912901340 @default.
- W4385953984 hasRelatedWork W3035303910 @default.
- W4385953984 hasRelatedWork W3144388600 @default.
- W4385953984 hasRelatedWork W3207731800 @default.
- W4385953984 hasRelatedWork W4310906510 @default.
- W4385953984 hasRelatedWork W4319296131 @default.
- W4385953984 hasRelatedWork W1972110671 @default.
- W4385953984 isParatext "false" @default.
- W4385953984 isRetracted "false" @default.
- W4385953984 workType "article" @default.