Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385954744> ?p ?o ?g. }
- W4385954744 endingPage "4068" @default.
- W4385954744 startingPage "4068" @default.
- W4385954744 abstract "Marine heatwaves (MHWs) are extreme events characterized by abnormally high sea surface temperatures, and they have significant impacts on marine ecosystems and human society. The rapid and accurate forecasting of MHWs is crucial for preventing and responding to the impacts they can lead to. However, the research on relevant forecasting methods is limited, and a dedicated forecasting system specifically tailored for the South China Sea (SCS) region has yet to be reported. This study proposes a novel forecasting system utilizing U-Net and ConvLSTM models to predict MHWs in the SCS. Specifically, the U-Net model is used to forecast the intensity of MHWs, while the ConvLSTM model is employed to predict the probability of their occurrence. The indication of an MHW relies on both the intensity forecasted by the U-Net model exceeding threshold T and the occurrence probability predicted by the ConvLSTM model surpassing threshold P. Incorporating sensitivity analysis, optimal thresholds for T are determined as 0.9 °C, 0.8 °C, 1.0 °C, and 1.0 °C for 1-, 3-, 5-, and 7-day forecast lead times, respectively. Similarly, optimal thresholds for P are identified as 0.29, 0.30, 0.20, and 0.28. Employing these thresholds yields the highest forecast accuracy rates of 0.92, 0.89, 0.88, and 0.87 for the corresponding forecast lead times. This innovative approach gives better predictions of MHWs in the SCS, providing invaluable reference information for marine management authorities to make well-informed decisions and issue timely MHW warnings." @default.
- W4385954744 created "2023-08-18" @default.
- W4385954744 creator A5016763095 @default.
- W4385954744 creator A5017102760 @default.
- W4385954744 creator A5046084479 @default.
- W4385954744 creator A5061546129 @default.
- W4385954744 creator A5088524559 @default.
- W4385954744 creator A5090106151 @default.
- W4385954744 date "2023-08-17" @default.
- W4385954744 modified "2023-10-16" @default.
- W4385954744 title "Artificial Intelligence Forecasting of Marine Heatwaves in the South China Sea Using a Combined U-Net and ConvLSTM System" @default.
- W4385954744 cites W2082603070 @default.
- W4385954744 cites W2131070146 @default.
- W4385954744 cites W2230443456 @default.
- W4385954744 cites W2302215634 @default.
- W4385954744 cites W2469199720 @default.
- W4385954744 cites W2522493641 @default.
- W4385954744 cites W2735759243 @default.
- W4385954744 cites W2769397563 @default.
- W4385954744 cites W2793970477 @default.
- W4385954744 cites W2796258844 @default.
- W4385954744 cites W2801390916 @default.
- W4385954744 cites W2886357179 @default.
- W4385954744 cites W2903075880 @default.
- W4385954744 cites W2919496064 @default.
- W4385954744 cites W2939010472 @default.
- W4385954744 cites W2948026328 @default.
- W4385954744 cites W2952780249 @default.
- W4385954744 cites W2963015221 @default.
- W4385954744 cites W3003114600 @default.
- W4385954744 cites W3008346068 @default.
- W4385954744 cites W3047360334 @default.
- W4385954744 cites W3080982706 @default.
- W4385954744 cites W3089081690 @default.
- W4385954744 cites W3101881145 @default.
- W4385954744 cites W3103114094 @default.
- W4385954744 cites W3107200375 @default.
- W4385954744 cites W3127935736 @default.
- W4385954744 cites W3148853714 @default.
- W4385954744 cites W3159332385 @default.
- W4385954744 cites W3162791930 @default.
- W4385954744 cites W3168154234 @default.
- W4385954744 cites W3172286344 @default.
- W4385954744 cites W3176925899 @default.
- W4385954744 cites W3190113331 @default.
- W4385954744 cites W3194216082 @default.
- W4385954744 cites W3202783044 @default.
- W4385954744 cites W3207444061 @default.
- W4385954744 cites W3209240971 @default.
- W4385954744 cites W3212726664 @default.
- W4385954744 cites W3214477859 @default.
- W4385954744 cites W3215950049 @default.
- W4385954744 cites W4210273918 @default.
- W4385954744 cites W4213047106 @default.
- W4385954744 cites W4213272360 @default.
- W4385954744 cites W4229063293 @default.
- W4385954744 cites W4280597540 @default.
- W4385954744 cites W4285006073 @default.
- W4385954744 cites W4292148468 @default.
- W4385954744 cites W4307182623 @default.
- W4385954744 cites W4307623823 @default.
- W4385954744 cites W4308413782 @default.
- W4385954744 cites W4308514091 @default.
- W4385954744 cites W4309929527 @default.
- W4385954744 cites W4311635570 @default.
- W4385954744 cites W4312193531 @default.
- W4385954744 cites W4319066115 @default.
- W4385954744 cites W4321107307 @default.
- W4385954744 cites W4324021064 @default.
- W4385954744 cites W4324326588 @default.
- W4385954744 cites W4328050690 @default.
- W4385954744 cites W4328090760 @default.
- W4385954744 cites W4360584282 @default.
- W4385954744 cites W4361228632 @default.
- W4385954744 cites W4366982688 @default.
- W4385954744 cites W4376140309 @default.
- W4385954744 doi "https://doi.org/10.3390/rs15164068" @default.
- W4385954744 hasPublicationYear "2023" @default.
- W4385954744 type Work @default.
- W4385954744 citedByCount "0" @default.
- W4385954744 crossrefType "journal-article" @default.
- W4385954744 hasAuthorship W4385954744A5016763095 @default.
- W4385954744 hasAuthorship W4385954744A5017102760 @default.
- W4385954744 hasAuthorship W4385954744A5046084479 @default.
- W4385954744 hasAuthorship W4385954744A5061546129 @default.
- W4385954744 hasAuthorship W4385954744A5088524559 @default.
- W4385954744 hasAuthorship W4385954744A5090106151 @default.
- W4385954744 hasBestOaLocation W43859547441 @default.
- W4385954744 hasConcept C110872660 @default.
- W4385954744 hasConcept C151152651 @default.
- W4385954744 hasConcept C153294291 @default.
- W4385954744 hasConcept C166957645 @default.
- W4385954744 hasConcept C18903297 @default.
- W4385954744 hasConcept C191935318 @default.
- W4385954744 hasConcept C205649164 @default.
- W4385954744 hasConcept C39432304 @default.
- W4385954744 hasConcept C41008148 @default.
- W4385954744 hasConcept C86803240 @default.