Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385957043> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4385957043 endingPage "576" @default.
- W4385957043 startingPage "565" @default.
- W4385957043 abstract "The HAR refers to a system that monitors human behaviors and activities by collecting data from a wide range of distinct kinds of wearable sensors. This system is known as human activity recognition. HAR enables in improving Health, Quality of life, Biomedical, and Mental Health. Recently, there has been an increase in demand for a range of HAR techniques, including those that make use of deep learning, machine learning, and CNN algorithms. Specifically, this need has been on the rise in the United States. In the most recent few years, this field of research has achieved major advancements, and there is still a substantial amount of research being carried out. Human activity recognition (HAR) has seen tremendous growth in the disciplines of pervasive computing, human–computer interaction, and human behavior analysis. Recently, machine learning (ML) algorithms have proven effective to predict a variety of human actions using time-series data from wearable sensors and cell phones. Even though ML-based techniques were excellent at identifying activities, managing time series data remains difficult. Time-series data still has a lot of problems, including hard feature extraction, extremely biased data, etc. Furthermore, manual feature engineering is a key component of the bulk of HAR approaches. Since each measurement made by wearable sensors like gyroscopes and accelerometers has a timestamp associated with it, time series data is the format utilized for data on human activity. The raw sensor data must be processed to obtain the necessary temporal properties for HAR. In-depth feature engineering and data pre-processing are required for the majority of HAR approaches, which in turn necessitates subject-matter expertise. These techniques are time-consuming and application-specific. This paper begins with an in-depth discussion of HAR, then moves on to a discussion of the various machine learning methods, and then concludes with a discussion of wearable sensors and the applications that can be used with them." @default.
- W4385957043 created "2023-08-18" @default.
- W4385957043 creator A5006269052 @default.
- W4385957043 creator A5028453454 @default.
- W4385957043 creator A5079101329 @default.
- W4385957043 creator A5085747578 @default.
- W4385957043 creator A5092656989 @default.
- W4385957043 date "2023-01-01" @default.
- W4385957043 modified "2023-10-17" @default.
- W4385957043 title "Machine Learning Techniques for Human Activity Recognition Using Wearable Sensors" @default.
- W4385957043 cites W2088111259 @default.
- W4385957043 cites W2587520514 @default.
- W4385957043 cites W2752111156 @default.
- W4385957043 cites W2760886216 @default.
- W4385957043 cites W2789868604 @default.
- W4385957043 cites W2802132828 @default.
- W4385957043 cites W2890957154 @default.
- W4385957043 cites W2907255073 @default.
- W4385957043 cites W2950883524 @default.
- W4385957043 cites W2967537207 @default.
- W4385957043 cites W2973962176 @default.
- W4385957043 cites W2977779402 @default.
- W4385957043 cites W2998376881 @default.
- W4385957043 cites W2998467809 @default.
- W4385957043 cites W3009411039 @default.
- W4385957043 cites W3036467967 @default.
- W4385957043 cites W3120335526 @default.
- W4385957043 cites W3122806818 @default.
- W4385957043 cites W3133590696 @default.
- W4385957043 cites W3156714642 @default.
- W4385957043 cites W3158415928 @default.
- W4385957043 cites W3193597430 @default.
- W4385957043 cites W3210766530 @default.
- W4385957043 cites W3211522713 @default.
- W4385957043 cites W4205137648 @default.
- W4385957043 cites W4210566560 @default.
- W4385957043 cites W4225634883 @default.
- W4385957043 cites W4225773502 @default.
- W4385957043 cites W4288754691 @default.
- W4385957043 doi "https://doi.org/10.1007/978-981-99-2271-0_43" @default.
- W4385957043 hasPublicationYear "2023" @default.
- W4385957043 type Work @default.
- W4385957043 citedByCount "0" @default.
- W4385957043 crossrefType "book-chapter" @default.
- W4385957043 hasAuthorship W4385957043A5006269052 @default.
- W4385957043 hasAuthorship W4385957043A5028453454 @default.
- W4385957043 hasAuthorship W4385957043A5079101329 @default.
- W4385957043 hasAuthorship W4385957043A5085747578 @default.
- W4385957043 hasAuthorship W4385957043A5092656989 @default.
- W4385957043 hasConcept C107457646 @default.
- W4385957043 hasConcept C108583219 @default.
- W4385957043 hasConcept C113954288 @default.
- W4385957043 hasConcept C119857082 @default.
- W4385957043 hasConcept C121687571 @default.
- W4385957043 hasConcept C149635348 @default.
- W4385957043 hasConcept C150594956 @default.
- W4385957043 hasConcept C154945302 @default.
- W4385957043 hasConcept C2778827112 @default.
- W4385957043 hasConcept C41008148 @default.
- W4385957043 hasConcept C54290928 @default.
- W4385957043 hasConcept C79403827 @default.
- W4385957043 hasConceptScore W4385957043C107457646 @default.
- W4385957043 hasConceptScore W4385957043C108583219 @default.
- W4385957043 hasConceptScore W4385957043C113954288 @default.
- W4385957043 hasConceptScore W4385957043C119857082 @default.
- W4385957043 hasConceptScore W4385957043C121687571 @default.
- W4385957043 hasConceptScore W4385957043C149635348 @default.
- W4385957043 hasConceptScore W4385957043C150594956 @default.
- W4385957043 hasConceptScore W4385957043C154945302 @default.
- W4385957043 hasConceptScore W4385957043C2778827112 @default.
- W4385957043 hasConceptScore W4385957043C41008148 @default.
- W4385957043 hasConceptScore W4385957043C54290928 @default.
- W4385957043 hasConceptScore W4385957043C79403827 @default.
- W4385957043 hasLocation W43859570431 @default.
- W4385957043 hasOpenAccess W4385957043 @default.
- W4385957043 hasPrimaryLocation W43859570431 @default.
- W4385957043 hasRelatedWork W2095299560 @default.
- W4385957043 hasRelatedWork W2117913171 @default.
- W4385957043 hasRelatedWork W2582769230 @default.
- W4385957043 hasRelatedWork W2797760888 @default.
- W4385957043 hasRelatedWork W2907667791 @default.
- W4385957043 hasRelatedWork W2943851981 @default.
- W4385957043 hasRelatedWork W2951851360 @default.
- W4385957043 hasRelatedWork W3090300519 @default.
- W4385957043 hasRelatedWork W3105278570 @default.
- W4385957043 hasRelatedWork W4250401876 @default.
- W4385957043 isParatext "false" @default.
- W4385957043 isRetracted "false" @default.
- W4385957043 workType "book-chapter" @default.