Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385963642> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W4385963642 abstract "We consider the family of diagonal hypersurfaces with monomial deformation $$D_{d, lambda, h}: x_1^d + x_2^d dots + x_n^d - d lambda , x_1^{h_1} x_2^{h_2} dots x_n^{h_n}=0$$ where $d = h_1+h_2 +dots + h_n$ with $gcd(h_1, h_2, dots h_n)=1$. We first provide a formula for the number of $mathbb{F}_{q}$-points on $D_{d, lambda, h}$ in terms of Gauss and Jacobi sums. This generalizes a result of Koblitz, which holds in the special case ${d mid {q-1}}$. We then express the number of $mathbb{F}_{q}$-points on $D_{d, lambda, h}$ in terms of a $p$-adic hypergeometric function previously defined by the author. The parameters in this hypergeometric function mirror exactly those described by Koblitz when drawing an analogy between his result and classical hypergeometric functions. This generalizes a result by Sulakashna and Barman, which holds in the case $gcd(d,{q-1})=1$. In the special case $h_1 = h_2 = dots =h_n = 1$ and $d=n$, i.e., the Dwork hypersurface, we also generalize a previous result of the author which holds when $q$ is prime." @default.
- W4385963642 created "2023-08-18" @default.
- W4385963642 creator A5030504623 @default.
- W4385963642 date "2023-08-02" @default.
- W4385963642 modified "2023-09-23" @default.
- W4385963642 title "The number of $mathbb{F}_q$-points on diagonal hypersurfaces with monomial deformation" @default.
- W4385963642 doi "https://doi.org/10.48550/arxiv.2308.01522" @default.
- W4385963642 hasPublicationYear "2023" @default.
- W4385963642 type Work @default.
- W4385963642 citedByCount "0" @default.
- W4385963642 crossrefType "posted-content" @default.
- W4385963642 hasAuthorship W4385963642A5030504623 @default.
- W4385963642 hasBestOaLocation W43859636421 @default.
- W4385963642 hasConcept C11252640 @default.
- W4385963642 hasConcept C114410712 @default.
- W4385963642 hasConcept C114614502 @default.
- W4385963642 hasConcept C121332964 @default.
- W4385963642 hasConcept C130367717 @default.
- W4385963642 hasConcept C176671685 @default.
- W4385963642 hasConcept C197320386 @default.
- W4385963642 hasConcept C202444582 @default.
- W4385963642 hasConcept C2524010 @default.
- W4385963642 hasConcept C2778113609 @default.
- W4385963642 hasConcept C33923547 @default.
- W4385963642 hasConcept C62520636 @default.
- W4385963642 hasConceptScore W4385963642C11252640 @default.
- W4385963642 hasConceptScore W4385963642C114410712 @default.
- W4385963642 hasConceptScore W4385963642C114614502 @default.
- W4385963642 hasConceptScore W4385963642C121332964 @default.
- W4385963642 hasConceptScore W4385963642C130367717 @default.
- W4385963642 hasConceptScore W4385963642C176671685 @default.
- W4385963642 hasConceptScore W4385963642C197320386 @default.
- W4385963642 hasConceptScore W4385963642C202444582 @default.
- W4385963642 hasConceptScore W4385963642C2524010 @default.
- W4385963642 hasConceptScore W4385963642C2778113609 @default.
- W4385963642 hasConceptScore W4385963642C33923547 @default.
- W4385963642 hasConceptScore W4385963642C62520636 @default.
- W4385963642 hasLocation W43859636421 @default.
- W4385963642 hasOpenAccess W4385963642 @default.
- W4385963642 hasPrimaryLocation W43859636421 @default.
- W4385963642 hasRelatedWork W2010958505 @default.
- W4385963642 hasRelatedWork W2024136828 @default.
- W4385963642 hasRelatedWork W2519979128 @default.
- W4385963642 hasRelatedWork W2582319843 @default.
- W4385963642 hasRelatedWork W2949558566 @default.
- W4385963642 hasRelatedWork W2950082494 @default.
- W4385963642 hasRelatedWork W2963851662 @default.
- W4385963642 hasRelatedWork W4297887361 @default.
- W4385963642 hasRelatedWork W4307205193 @default.
- W4385963642 hasRelatedWork W4312091103 @default.
- W4385963642 isParatext "false" @default.
- W4385963642 isRetracted "false" @default.
- W4385963642 workType "article" @default.