Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385965171> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4385965171 abstract "Abstract Purpose To accelerate radially sampled diffusion weighted spin‐echo (Rad‐DW‐SE) acquisition method for generating high quality ADC maps. Methods A deep learning method was developed to generate accurate ADC maps from accelerated DWI data acquired with the Rad‐DW‐SE method. The deep learning method integrates convolutional neural networks (CNNs) with vision transformers to generate high quality ADC maps from accelerated DWI data, regularized by a monoexponential ADC model fitting term. A model was trained on DWI data of 147 mice and evaluated on DWI data of 36 mice, with acceleration factors of 4× and 8× compared to the original acquisition parameters. Results Ablation studies and experimental results have demonstrated that the proposed deep learning model generates higher quality ADC maps from accelerated DWI data than alternative deep learning methods under comparison when their performance is quantified in whole images as well as in regions of interest, including tumors, kidneys, and muscles. Conclusions The deep learning method with integrated CNNs and transformers provides an effective means to accurately compute ADC maps from accelerated DWI data acquired with the Rad‐DW‐SE method." @default.
- W4385965171 created "2023-08-18" @default.
- W4385965171 creator A5009763720 @default.
- W4385965171 creator A5019161876 @default.
- W4385965171 creator A5032267453 @default.
- W4385965171 creator A5041951976 @default.
- W4385965171 creator A5058594445 @default.
- W4385965171 creator A5071125868 @default.
- W4385965171 date "2023-08-20" @default.
- W4385965171 modified "2023-10-15" @default.
- W4385965171 title "Learning ADC maps from accelerated radial <scp>k‐space</scp> diffusion‐weighted <scp>MRI</scp> in mice using a deep <scp>CNN‐transformer</scp> model" @default.
- W4385965171 cites W1812490466 @default.
- W4385965171 cites W1964264259 @default.
- W4385965171 cites W1966471572 @default.
- W4385965171 cites W1967691758 @default.
- W4385965171 cites W1974156572 @default.
- W4385965171 cites W1989029379 @default.
- W4385965171 cites W2020484901 @default.
- W4385965171 cites W2052508810 @default.
- W4385965171 cites W2060612190 @default.
- W4385965171 cites W2083430651 @default.
- W4385965171 cites W2101675075 @default.
- W4385965171 cites W2106600765 @default.
- W4385965171 cites W2134004687 @default.
- W4385965171 cites W2164757470 @default.
- W4385965171 cites W2328247767 @default.
- W4385965171 cites W2574952845 @default.
- W4385965171 cites W2791621240 @default.
- W4385965171 cites W2795380527 @default.
- W4385965171 cites W2889995282 @default.
- W4385965171 cites W2901826627 @default.
- W4385965171 cites W3004715589 @default.
- W4385965171 cites W3089225552 @default.
- W4385965171 cites W3128849209 @default.
- W4385965171 cites W3131212670 @default.
- W4385965171 cites W3160162492 @default.
- W4385965171 cites W4281476291 @default.
- W4385965171 cites W4292547241 @default.
- W4385965171 doi "https://doi.org/10.1002/mrm.29833" @default.
- W4385965171 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37598398" @default.
- W4385965171 hasPublicationYear "2023" @default.
- W4385965171 type Work @default.
- W4385965171 citedByCount "0" @default.
- W4385965171 crossrefType "journal-article" @default.
- W4385965171 hasAuthorship W4385965171A5009763720 @default.
- W4385965171 hasAuthorship W4385965171A5019161876 @default.
- W4385965171 hasAuthorship W4385965171A5032267453 @default.
- W4385965171 hasAuthorship W4385965171A5041951976 @default.
- W4385965171 hasAuthorship W4385965171A5058594445 @default.
- W4385965171 hasAuthorship W4385965171A5071125868 @default.
- W4385965171 hasBestOaLocation W43859651711 @default.
- W4385965171 hasConcept C108583219 @default.
- W4385965171 hasConcept C126838900 @default.
- W4385965171 hasConcept C143409427 @default.
- W4385965171 hasConcept C149550507 @default.
- W4385965171 hasConcept C153180895 @default.
- W4385965171 hasConcept C154945302 @default.
- W4385965171 hasConcept C2989005 @default.
- W4385965171 hasConcept C41008148 @default.
- W4385965171 hasConcept C50644808 @default.
- W4385965171 hasConcept C70816921 @default.
- W4385965171 hasConcept C71924100 @default.
- W4385965171 hasConcept C81363708 @default.
- W4385965171 hasConceptScore W4385965171C108583219 @default.
- W4385965171 hasConceptScore W4385965171C126838900 @default.
- W4385965171 hasConceptScore W4385965171C143409427 @default.
- W4385965171 hasConceptScore W4385965171C149550507 @default.
- W4385965171 hasConceptScore W4385965171C153180895 @default.
- W4385965171 hasConceptScore W4385965171C154945302 @default.
- W4385965171 hasConceptScore W4385965171C2989005 @default.
- W4385965171 hasConceptScore W4385965171C41008148 @default.
- W4385965171 hasConceptScore W4385965171C50644808 @default.
- W4385965171 hasConceptScore W4385965171C70816921 @default.
- W4385965171 hasConceptScore W4385965171C71924100 @default.
- W4385965171 hasConceptScore W4385965171C81363708 @default.
- W4385965171 hasFunder F4320332161 @default.
- W4385965171 hasLocation W43859651711 @default.
- W4385965171 hasLocation W43859651712 @default.
- W4385965171 hasLocation W43859651713 @default.
- W4385965171 hasOpenAccess W4385965171 @default.
- W4385965171 hasPrimaryLocation W43859651711 @default.
- W4385965171 hasRelatedWork W2731899572 @default.
- W4385965171 hasRelatedWork W2999805992 @default.
- W4385965171 hasRelatedWork W3011074480 @default.
- W4385965171 hasRelatedWork W3116150086 @default.
- W4385965171 hasRelatedWork W3133861977 @default.
- W4385965171 hasRelatedWork W3192840557 @default.
- W4385965171 hasRelatedWork W4200173597 @default.
- W4385965171 hasRelatedWork W4291897433 @default.
- W4385965171 hasRelatedWork W4312417841 @default.
- W4385965171 hasRelatedWork W4321369474 @default.
- W4385965171 isParatext "false" @default.
- W4385965171 isRetracted "false" @default.
- W4385965171 workType "article" @default.