Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385965923> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4385965923 abstract "The accurate calculation and uncertainty quantification of the characteristics of spent nuclear fuel (SNF) play a crucial role in ensuring the safety, efficiency, and sustainability of nuclear energy production, waste management, and nuclear safeguards. State of the art physics-based models, while reliable, are computationally intensive and time-consuming. This paper presents a surrogate modeling approach using neural networks (NN) to predict a number of SNF characteristics with reduced computational costs compared to physics-based models. An NN is trained using data generated from CASMO5 lattice calculations. The trained NN accurately predicts decay heat and nuclide concentrations of SNF, as a function of key input parameters, such as enrichment, burnup, cooling time between cycles, mean boron concentration and fuel temperature. The model is validated against physics-based decay heat simulations and measurements of different uranium oxide fuel assemblies from two different pressurized water reactors. In addition, the NN is used to perform sensitivity analysis and uncertainty quantification. The results are in very good alignment to CASMO5, while the computational costs (taking into account the costs of generating training samples) are reduced by a factor of 10 or more. Our findings demonstrate the feasibility of using NNs as surrogate models for fast characterization of SNF, providing a promising avenue for improving computational efficiency in assessing nuclear fuel behavior and associated risks." @default.
- W4385965923 created "2023-08-18" @default.
- W4385965923 creator A5018141171 @default.
- W4385965923 creator A5047489425 @default.
- W4385965923 creator A5057790835 @default.
- W4385965923 creator A5091591081 @default.
- W4385965923 creator A5092838113 @default.
- W4385965923 date "2023-08-16" @default.
- W4385965923 modified "2023-09-27" @default.
- W4385965923 title "Fast Uncertainty Quantification of Spent Nuclear Fuel with Neural Networks" @default.
- W4385965923 doi "https://doi.org/10.48550/arxiv.2308.08391" @default.
- W4385965923 hasPublicationYear "2023" @default.
- W4385965923 type Work @default.
- W4385965923 citedByCount "0" @default.
- W4385965923 crossrefType "posted-content" @default.
- W4385965923 hasAuthorship W4385965923A5018141171 @default.
- W4385965923 hasAuthorship W4385965923A5047489425 @default.
- W4385965923 hasAuthorship W4385965923A5057790835 @default.
- W4385965923 hasAuthorship W4385965923A5091591081 @default.
- W4385965923 hasAuthorship W4385965923A5092838113 @default.
- W4385965923 hasBestOaLocation W43859659231 @default.
- W4385965923 hasConcept C116915560 @default.
- W4385965923 hasConcept C119857082 @default.
- W4385965923 hasConcept C121332964 @default.
- W4385965923 hasConcept C127413603 @default.
- W4385965923 hasConcept C150328934 @default.
- W4385965923 hasConcept C152568617 @default.
- W4385965923 hasConcept C154945302 @default.
- W4385965923 hasConcept C177571023 @default.
- W4385965923 hasConcept C177803969 @default.
- W4385965923 hasConcept C185544564 @default.
- W4385965923 hasConcept C21200559 @default.
- W4385965923 hasConcept C24326235 @default.
- W4385965923 hasConcept C2778260006 @default.
- W4385965923 hasConcept C2779281675 @default.
- W4385965923 hasConcept C2779819667 @default.
- W4385965923 hasConcept C32230216 @default.
- W4385965923 hasConcept C39432304 @default.
- W4385965923 hasConcept C41008148 @default.
- W4385965923 hasConcept C44154836 @default.
- W4385965923 hasConcept C50644808 @default.
- W4385965923 hasConcept C7083945 @default.
- W4385965923 hasConcept C89690796 @default.
- W4385965923 hasConceptScore W4385965923C116915560 @default.
- W4385965923 hasConceptScore W4385965923C119857082 @default.
- W4385965923 hasConceptScore W4385965923C121332964 @default.
- W4385965923 hasConceptScore W4385965923C127413603 @default.
- W4385965923 hasConceptScore W4385965923C150328934 @default.
- W4385965923 hasConceptScore W4385965923C152568617 @default.
- W4385965923 hasConceptScore W4385965923C154945302 @default.
- W4385965923 hasConceptScore W4385965923C177571023 @default.
- W4385965923 hasConceptScore W4385965923C177803969 @default.
- W4385965923 hasConceptScore W4385965923C185544564 @default.
- W4385965923 hasConceptScore W4385965923C21200559 @default.
- W4385965923 hasConceptScore W4385965923C24326235 @default.
- W4385965923 hasConceptScore W4385965923C2778260006 @default.
- W4385965923 hasConceptScore W4385965923C2779281675 @default.
- W4385965923 hasConceptScore W4385965923C2779819667 @default.
- W4385965923 hasConceptScore W4385965923C32230216 @default.
- W4385965923 hasConceptScore W4385965923C39432304 @default.
- W4385965923 hasConceptScore W4385965923C41008148 @default.
- W4385965923 hasConceptScore W4385965923C44154836 @default.
- W4385965923 hasConceptScore W4385965923C50644808 @default.
- W4385965923 hasConceptScore W4385965923C7083945 @default.
- W4385965923 hasConceptScore W4385965923C89690796 @default.
- W4385965923 hasLocation W43859659231 @default.
- W4385965923 hasOpenAccess W4385965923 @default.
- W4385965923 hasPrimaryLocation W43859659231 @default.
- W4385965923 hasRelatedWork W2072062169 @default.
- W4385965923 hasRelatedWork W29236223 @default.
- W4385965923 hasRelatedWork W2935223556 @default.
- W4385965923 hasRelatedWork W3016605183 @default.
- W4385965923 hasRelatedWork W304030365 @default.
- W4385965923 hasRelatedWork W3094145064 @default.
- W4385965923 hasRelatedWork W3130249949 @default.
- W4385965923 hasRelatedWork W3138378613 @default.
- W4385965923 hasRelatedWork W4327978095 @default.
- W4385965923 hasRelatedWork W4378637447 @default.
- W4385965923 isParatext "false" @default.
- W4385965923 isRetracted "false" @default.
- W4385965923 workType "article" @default.