Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385970115> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4385970115 abstract "Let $(k_n)_{n in mathbb{N}}$ be a sequence of positive integers growing to infinity at a sublinear rate, $k_n rightarrow infty$ and $k_n/n rightarrow 0$ as $n rightarrow infty$. Given a sequence of $n$-dimensional random vectors ${Y^{(n)}}_{n in mathbb{N}}$ belonging to a certain class, which includes uniform distributions on suitably scaled $ell_p^n$-balls or $ell_p^n$-spheres, $p geq 2$, and product distributions with sub-Gaussian marginals, we study the large deviations behavior of the corresponding sequence of $k_n$-dimensional orthogonal projections $n^{-1/2} boldsymbol{a}_{n,k_n} Y^{(n)}$, where $boldsymbol{a}_{n,k_n}$ is an $(n times k_n)$-dimensional projection matrix lying in the Stiefel manifold of orthonormal $k_n$-frames in $mathbb{R}^n$. For almost every sequence of projection matrices, we establish a large deviation principle (LDP) for the corresponding sequence of projections, with a fairly explicit rate function that does not depend on the sequence of projection matrices. As corollaries, we also obtain quenched LDPs for sequences of $ell_2$-norms and $ell_infty$-norms of the coordinates of the projections. Past work on LDPs for projections with growing dimension has mainly focused on the annealed setting, where one also averages over the random projection matrix, chosen from the Haar measure, in which case the coordinates of the projection are exchangeable. The quenched setting lacks such symmetry properties, and gives rise to significant new challenges in the setting of growing projection dimension. Along the way, we establish new Gaussian approximation results on the Stiefel manifold that may be of independent interest. Such LDPs are of relevance in asymptotic convex geometry, statistical physics and high-dimensional statistics." @default.
- W4385970115 created "2023-08-19" @default.
- W4385970115 creator A5043117784 @default.
- W4385970115 creator A5072223676 @default.
- W4385970115 creator A5072289328 @default.
- W4385970115 date "2023-08-01" @default.
- W4385970115 modified "2023-09-23" @default.
- W4385970115 title "Quenched large deviation principles for random projections of $ell_p^n$ balls" @default.
- W4385970115 doi "https://doi.org/10.48550/arxiv.2308.00649" @default.
- W4385970115 hasPublicationYear "2023" @default.
- W4385970115 type Work @default.
- W4385970115 citedByCount "0" @default.
- W4385970115 crossrefType "posted-content" @default.
- W4385970115 hasAuthorship W4385970115A5043117784 @default.
- W4385970115 hasAuthorship W4385970115A5072223676 @default.
- W4385970115 hasAuthorship W4385970115A5072289328 @default.
- W4385970115 hasBestOaLocation W43859701151 @default.
- W4385970115 hasConcept C105795698 @default.
- W4385970115 hasConcept C106487976 @default.
- W4385970115 hasConcept C11413529 @default.
- W4385970115 hasConcept C114614502 @default.
- W4385970115 hasConcept C121332964 @default.
- W4385970115 hasConcept C158693339 @default.
- W4385970115 hasConcept C15964574 @default.
- W4385970115 hasConcept C159985019 @default.
- W4385970115 hasConcept C192562407 @default.
- W4385970115 hasConcept C2524010 @default.
- W4385970115 hasConcept C2778112365 @default.
- W4385970115 hasConcept C33676613 @default.
- W4385970115 hasConcept C33923547 @default.
- W4385970115 hasConcept C54355233 @default.
- W4385970115 hasConcept C57493831 @default.
- W4385970115 hasConcept C612670 @default.
- W4385970115 hasConcept C62520636 @default.
- W4385970115 hasConcept C64812099 @default.
- W4385970115 hasConcept C75438885 @default.
- W4385970115 hasConcept C86803240 @default.
- W4385970115 hasConceptScore W4385970115C105795698 @default.
- W4385970115 hasConceptScore W4385970115C106487976 @default.
- W4385970115 hasConceptScore W4385970115C11413529 @default.
- W4385970115 hasConceptScore W4385970115C114614502 @default.
- W4385970115 hasConceptScore W4385970115C121332964 @default.
- W4385970115 hasConceptScore W4385970115C158693339 @default.
- W4385970115 hasConceptScore W4385970115C15964574 @default.
- W4385970115 hasConceptScore W4385970115C159985019 @default.
- W4385970115 hasConceptScore W4385970115C192562407 @default.
- W4385970115 hasConceptScore W4385970115C2524010 @default.
- W4385970115 hasConceptScore W4385970115C2778112365 @default.
- W4385970115 hasConceptScore W4385970115C33676613 @default.
- W4385970115 hasConceptScore W4385970115C33923547 @default.
- W4385970115 hasConceptScore W4385970115C54355233 @default.
- W4385970115 hasConceptScore W4385970115C57493831 @default.
- W4385970115 hasConceptScore W4385970115C612670 @default.
- W4385970115 hasConceptScore W4385970115C62520636 @default.
- W4385970115 hasConceptScore W4385970115C64812099 @default.
- W4385970115 hasConceptScore W4385970115C75438885 @default.
- W4385970115 hasConceptScore W4385970115C86803240 @default.
- W4385970115 hasLocation W43859701151 @default.
- W4385970115 hasOpenAccess W4385970115 @default.
- W4385970115 hasPrimaryLocation W43859701151 @default.
- W4385970115 hasRelatedWork W2273026252 @default.
- W4385970115 hasRelatedWork W2293299801 @default.
- W4385970115 hasRelatedWork W2881281212 @default.
- W4385970115 hasRelatedWork W2963582927 @default.
- W4385970115 hasRelatedWork W3020454757 @default.
- W4385970115 hasRelatedWork W3129283872 @default.
- W4385970115 hasRelatedWork W3161917583 @default.
- W4385970115 hasRelatedWork W4239794397 @default.
- W4385970115 hasRelatedWork W4291417854 @default.
- W4385970115 hasRelatedWork W4304699800 @default.
- W4385970115 isParatext "false" @default.
- W4385970115 isRetracted "false" @default.
- W4385970115 workType "article" @default.