Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385971188> ?p ?o ?g. }
- W4385971188 endingPage "18" @default.
- W4385971188 startingPage "1" @default.
- W4385971188 abstract "A vast amount of unstructured data is being generated in the age of big data. Relation extraction (RE) is the critical way to improve the utility of the data by extracting structured data, which has seen a great evolution in recent years. This paper first introduces five paradigms of RE, namely the rule-based paradigm, the machine learning paradigm, the deep learning model-based paradigm, and the two types of current mainstream methods with pretrained language models. Based on the RE scenario, a comprehensive introduction is made for the currently popular paradigm with prompt learning, which is investigated regarding four aspects. The main contributions of this paper are as follows. Since big models are too large to be easily trained, prompt learning has become a promising research direction for RE, our work is, therefore, a systematic introduction to this paradigm for RE and compared with traditional paradigms. In addition, this paper summarizes the current problems faced by RE tasks and proposes valuable research directions with prompt learning." @default.
- W4385971188 created "2023-08-19" @default.
- W4385971188 creator A5015927439 @default.
- W4385971188 creator A5026302630 @default.
- W4385971188 creator A5033020983 @default.
- W4385971188 creator A5040290579 @default.
- W4385971188 creator A5057087345 @default.
- W4385971188 creator A5066659782 @default.
- W4385971188 date "2023-08-18" @default.
- W4385971188 modified "2023-10-14" @default.
- W4385971188 title "Is Prompt the Future?" @default.
- W4385971188 cites W1604644367 @default.
- W4385971188 cites W1682403713 @default.
- W4385971188 cites W2097960255 @default.
- W4385971188 cites W2107598941 @default.
- W4385971188 cites W2117130368 @default.
- W4385971188 cites W2156869222 @default.
- W4385971188 cites W2163922914 @default.
- W4385971188 cites W2251135946 @default.
- W4385971188 cites W2283196293 @default.
- W4385971188 cites W2467240462 @default.
- W4385971188 cites W2513378248 @default.
- W4385971188 cites W2515462165 @default.
- W4385971188 cites W2517194566 @default.
- W4385971188 cites W2564980658 @default.
- W4385971188 cites W2604165577 @default.
- W4385971188 cites W2604314403 @default.
- W4385971188 cites W2800905795 @default.
- W4385971188 cites W2808142148 @default.
- W4385971188 cites W2890299555 @default.
- W4385971188 cites W2892094955 @default.
- W4385971188 cites W2953356739 @default.
- W4385971188 cites W2963026768 @default.
- W4385971188 cites W2963454301 @default.
- W4385971188 cites W2963777632 @default.
- W4385971188 cites W2964022985 @default.
- W4385971188 cites W2970200208 @default.
- W4385971188 cites W2971136144 @default.
- W4385971188 cites W2997591266 @default.
- W4385971188 cites W2997827534 @default.
- W4385971188 cites W3034617555 @default.
- W4385971188 cites W3034999214 @default.
- W4385971188 cites W3044438666 @default.
- W4385971188 cites W3098267758 @default.
- W4385971188 cites W3099655892 @default.
- W4385971188 cites W3100338574 @default.
- W4385971188 cites W3104163040 @default.
- W4385971188 cites W3167136668 @default.
- W4385971188 cites W3172642864 @default.
- W4385971188 cites W3173777717 @default.
- W4385971188 cites W3176489198 @default.
- W4385971188 cites W3177474367 @default.
- W4385971188 cites W3188542058 @default.
- W4385971188 cites W3194836374 @default.
- W4385971188 cites W3198571508 @default.
- W4385971188 cites W3212893438 @default.
- W4385971188 cites W4205991051 @default.
- W4385971188 cites W4212926911 @default.
- W4385971188 cites W4226135474 @default.
- W4385971188 cites W4229060262 @default.
- W4385971188 cites W4280637601 @default.
- W4385971188 cites W4283802662 @default.
- W4385971188 cites W4285246823 @default.
- W4385971188 cites W4285247752 @default.
- W4385971188 cites W4298111738 @default.
- W4385971188 cites W4309811444 @default.
- W4385971188 cites W4327519588 @default.
- W4385971188 doi "https://doi.org/10.4018/ijitsa.328681" @default.
- W4385971188 hasPublicationYear "2023" @default.
- W4385971188 type Work @default.
- W4385971188 citedByCount "0" @default.
- W4385971188 crossrefType "journal-article" @default.
- W4385971188 hasAuthorship W4385971188A5015927439 @default.
- W4385971188 hasAuthorship W4385971188A5026302630 @default.
- W4385971188 hasAuthorship W4385971188A5033020983 @default.
- W4385971188 hasAuthorship W4385971188A5040290579 @default.
- W4385971188 hasAuthorship W4385971188A5057087345 @default.
- W4385971188 hasAuthorship W4385971188A5066659782 @default.
- W4385971188 hasBestOaLocation W43859711881 @default.
- W4385971188 hasConcept C108583219 @default.
- W4385971188 hasConcept C111472728 @default.
- W4385971188 hasConcept C119857082 @default.
- W4385971188 hasConcept C124101348 @default.
- W4385971188 hasConcept C138885662 @default.
- W4385971188 hasConcept C154945302 @default.
- W4385971188 hasConcept C2522767166 @default.
- W4385971188 hasConcept C25343380 @default.
- W4385971188 hasConcept C27206212 @default.
- W4385971188 hasConcept C2777617010 @default.
- W4385971188 hasConcept C41008148 @default.
- W4385971188 hasConcept C43540301 @default.
- W4385971188 hasConcept C75684735 @default.
- W4385971188 hasConceptScore W4385971188C108583219 @default.
- W4385971188 hasConceptScore W4385971188C111472728 @default.
- W4385971188 hasConceptScore W4385971188C119857082 @default.
- W4385971188 hasConceptScore W4385971188C124101348 @default.
- W4385971188 hasConceptScore W4385971188C138885662 @default.
- W4385971188 hasConceptScore W4385971188C154945302 @default.