Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385971380> ?p ?o ?g. }
- W4385971380 abstract "Abstract Normal development of the immune system is essential for overall health and disease resistance. Bony fish, such as the zebrafish ( Danio rerio ), possess all the major immune cell lineages as mammals and can be employed to model human host response to immune challenge. Zebrafish neutrophils, for example, are present in the transparent larvae as early as 48 hours post fertilization and have been examined in numerous infection and immunotoxicology reports. One significant advantage of the zebrafish model is the ability to affordably generate high numbers of individual larvae that can be arrayed in multi-well plates for high throughput genetic and chemical exposure screens. However, traditional workflows for imaging individual larvae have been limited to low-throughput studies using traditional microscopes and manual analyses. Using a newly developed, parallelized microscope, the Multi-Camera Array Microscope (MCAM™), we have optimized a rapid, high-resolution algorithmic method to count fluorescently labeled cells in zebrafish larvae in vivo . Using transgenic zebrafish larvae, in which neutrophils express EGFP, we captured 18 gigapixels of images across a full 96-well plate, in 75 seconds, and processed the resulting datastream, counting individual fluorescent neutrophils in all individual larvae in 5 minutes. This automation is facilitated by a machine learning segmentation algorithm that defines the most in-focus view of each larva in each well after which pixel intensity thresholding and blob detection are employed to locate and count fluorescent cells. We validated this method by comparing algorithmic neutrophil counts to manual counts in larvae subjected to changes in neutrophil numbers, demonstrating the utility of this approach for high-throughput genetic and chemical screens where a change in neutrophil number is an endpoint metric. Using the MCAM™ we have been able to, within minutes, acquire both enough data to create an automated algorithm and execute a biological experiment with statistical significance. Finally, we present this open-source software package which allows the user to train and evaluate a custom machine learning segmentation model and use it to localize zebrafish and analyze cell counts within the segmented region of interest. This software can be modified as needed for studies involving other zebrafish cell lineages using different transgenic reporter lines and can also be adapted for studies using other amenable model species." @default.
- W4385971380 created "2023-08-19" @default.
- W4385971380 creator A5005667808 @default.
- W4385971380 creator A5035962915 @default.
- W4385971380 creator A5039541340 @default.
- W4385971380 creator A5054148695 @default.
- W4385971380 creator A5057693916 @default.
- W4385971380 creator A5062056167 @default.
- W4385971380 creator A5070819058 @default.
- W4385971380 creator A5071360327 @default.
- W4385971380 creator A5072545022 @default.
- W4385971380 creator A5087625474 @default.
- W4385971380 creator A5092804801 @default.
- W4385971380 date "2023-08-18" @default.
- W4385971380 modified "2023-10-06" @default.
- W4385971380 title "Automated, high-throughput quantification of EGFP-expressing neutrophils in zebrafish by machine learning and a highly-parallelized microscope" @default.
- W4385971380 cites W1196768483 @default.
- W4385971380 cites W1525631450 @default.
- W4385971380 cites W1901129140 @default.
- W4385971380 cites W1974337260 @default.
- W4385971380 cites W1979790110 @default.
- W4385971380 cites W1983933064 @default.
- W4385971380 cites W2003370853 @default.
- W4385971380 cites W2003386389 @default.
- W4385971380 cites W2017418319 @default.
- W4385971380 cites W2020179710 @default.
- W4385971380 cites W2044640065 @default.
- W4385971380 cites W2050195517 @default.
- W4385971380 cites W2057965337 @default.
- W4385971380 cites W2074574257 @default.
- W4385971380 cites W2076970838 @default.
- W4385971380 cites W2077024843 @default.
- W4385971380 cites W2083245174 @default.
- W4385971380 cites W2104916927 @default.
- W4385971380 cites W2122032324 @default.
- W4385971380 cites W2140639042 @default.
- W4385971380 cites W2145322906 @default.
- W4385971380 cites W2151103935 @default.
- W4385971380 cites W2152961129 @default.
- W4385971380 cites W2171973487 @default.
- W4385971380 cites W2194775991 @default.
- W4385971380 cites W2326697796 @default.
- W4385971380 cites W2331471580 @default.
- W4385971380 cites W2409417934 @default.
- W4385971380 cites W2467496703 @default.
- W4385971380 cites W2560311620 @default.
- W4385971380 cites W2618530766 @default.
- W4385971380 cites W2752636198 @default.
- W4385971380 cites W2790969599 @default.
- W4385971380 cites W2919423303 @default.
- W4385971380 cites W2945576057 @default.
- W4385971380 cites W2981630388 @default.
- W4385971380 cites W3006962589 @default.
- W4385971380 cites W3025581268 @default.
- W4385971380 cites W3102474308 @default.
- W4385971380 cites W3109783949 @default.
- W4385971380 cites W3112139896 @default.
- W4385971380 cites W3135028703 @default.
- W4385971380 cites W3161466751 @default.
- W4385971380 cites W3178549230 @default.
- W4385971380 cites W3187543097 @default.
- W4385971380 cites W3190630416 @default.
- W4385971380 cites W3200625196 @default.
- W4385971380 cites W3215233185 @default.
- W4385971380 cites W4206320827 @default.
- W4385971380 cites W4226114467 @default.
- W4385971380 cites W4281615935 @default.
- W4385971380 cites W4298085041 @default.
- W4385971380 cites W4310668711 @default.
- W4385971380 cites W4311404565 @default.
- W4385971380 cites W4317569561 @default.
- W4385971380 cites W4318542712 @default.
- W4385971380 cites W4320857474 @default.
- W4385971380 cites W4377030306 @default.
- W4385971380 cites W561496623 @default.
- W4385971380 doi "https://doi.org/10.1101/2023.08.16.553550" @default.
- W4385971380 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37645798" @default.
- W4385971380 hasPublicationYear "2023" @default.
- W4385971380 type Work @default.
- W4385971380 citedByCount "0" @default.
- W4385971380 crossrefType "posted-content" @default.
- W4385971380 hasAuthorship W4385971380A5005667808 @default.
- W4385971380 hasAuthorship W4385971380A5035962915 @default.
- W4385971380 hasAuthorship W4385971380A5039541340 @default.
- W4385971380 hasAuthorship W4385971380A5054148695 @default.
- W4385971380 hasAuthorship W4385971380A5057693916 @default.
- W4385971380 hasAuthorship W4385971380A5062056167 @default.
- W4385971380 hasAuthorship W4385971380A5070819058 @default.
- W4385971380 hasAuthorship W4385971380A5071360327 @default.
- W4385971380 hasAuthorship W4385971380A5072545022 @default.
- W4385971380 hasAuthorship W4385971380A5087625474 @default.
- W4385971380 hasAuthorship W4385971380A5092804801 @default.
- W4385971380 hasBestOaLocation W43859713801 @default.
- W4385971380 hasConcept C104317684 @default.
- W4385971380 hasConcept C142613039 @default.
- W4385971380 hasConcept C142724271 @default.
- W4385971380 hasConcept C203014093 @default.
- W4385971380 hasConcept C2776878037 @default.
- W4385971380 hasConcept C54355233 @default.
- W4385971380 hasConcept C67649825 @default.