Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385972009> ?p ?o ?g. }
- W4385972009 abstract "Abstract The ability to learn from past experience is an important adaptation, but how natural selection shapes learning is not well understood. Here, we present a novel way of modelling learning using small neural networks and a simple, biology-inspired learning algorithm. Learning affects only part of the network, and it is governed by the difference between expectations and reality. We used this model to study the evolution of learning under various environmental conditions and different scenarios for the trade-off between exploration (learning) and exploitation (foraging). Efficient learning regularly evolved in our individual-based simulations. However, in line with previous studies, the evolution of learning was less likely in relatively constant environments (where genetic adaptation alone can lead to efficient foraging) or in the case of short-lived organisms (that cannot afford to spend much of their lifetime on exploration). Once learning did evolve, the characteristics of the learning strategy (the duration of the learning period and the learning rate) and the average performance after learning were surprisingly little affected by the frequency and/or magnitude of environmental change. In contrast, an organism’s lifespan and the distribution of resources in the environment had a strong effect on the evolved learning strategy. Interestingly, a longer learning period did not always lead to better performance, indicating that the evolved neural networks differ in the effectiveness of learning. Overall, however, we showed that a biologically inspired, yet relatively simple, learning mechanism can evolve to lead to an efficient adaptation in a changing environment. Author Summary The ability to learn from experience is an important adaptation. However, it is still unclear how learning is shaped by natural selection. Here, we present a novel way of modelling the evolution of learning using small neural networks and a simple, biology-inspired learning mechanism. Computer simulations reveal that efficient learning readily evolves in this model. However, the evolution of learning is less likely in relatively constant environments (where evolved inborn preferences can guide animal behaviour) and in short-lived organisms (that cannot afford to spend much of their lifetime on learning). If learning does evolve, the evolved learning strategy is strongly affected by the lifespan and environmental richness but surprisingly little by the rate and degree of environmental change. In summary, we show that a simple and biologically plausible mechanism can help understand the evolution of learning and the structure of the evolved learning strategies." @default.
- W4385972009 created "2023-08-19" @default.
- W4385972009 creator A5022865589 @default.
- W4385972009 creator A5061886482 @default.
- W4385972009 date "2023-08-18" @default.
- W4385972009 modified "2023-10-06" @default.
- W4385972009 title "A neural network model for the evolution of learning in changing environments" @default.
- W4385972009 cites W141999170 @default.
- W4385972009 cites W1507439377 @default.
- W4385972009 cites W1577932924 @default.
- W4385972009 cites W1595744040 @default.
- W4385972009 cites W1857370391 @default.
- W4385972009 cites W1983959081 @default.
- W4385972009 cites W1991069939 @default.
- W4385972009 cites W1993680276 @default.
- W4385972009 cites W1998313484 @default.
- W4385972009 cites W2027646695 @default.
- W4385972009 cites W2035075830 @default.
- W4385972009 cites W2037024114 @default.
- W4385972009 cites W2046555694 @default.
- W4385972009 cites W2052363954 @default.
- W4385972009 cites W2067312754 @default.
- W4385972009 cites W2080683849 @default.
- W4385972009 cites W2080856558 @default.
- W4385972009 cites W2085649921 @default.
- W4385972009 cites W2093702500 @default.
- W4385972009 cites W2107289345 @default.
- W4385972009 cites W2109489692 @default.
- W4385972009 cites W2113117298 @default.
- W4385972009 cites W2116272404 @default.
- W4385972009 cites W2117879460 @default.
- W4385972009 cites W2132091862 @default.
- W4385972009 cites W2149334142 @default.
- W4385972009 cites W2151416715 @default.
- W4385972009 cites W2162225069 @default.
- W4385972009 cites W2162412071 @default.
- W4385972009 cites W2168252242 @default.
- W4385972009 cites W2171658832 @default.
- W4385972009 cites W2171865010 @default.
- W4385972009 cites W2200681203 @default.
- W4385972009 cites W2419438565 @default.
- W4385972009 cites W2528476808 @default.
- W4385972009 cites W2763388400 @default.
- W4385972009 cites W2811393485 @default.
- W4385972009 cites W2896556344 @default.
- W4385972009 cites W2897785922 @default.
- W4385972009 cites W2911925130 @default.
- W4385972009 cites W2917576966 @default.
- W4385972009 cites W2951431650 @default.
- W4385972009 cites W3047351295 @default.
- W4385972009 cites W4233671617 @default.
- W4385972009 cites W4240343015 @default.
- W4385972009 cites W4362674001 @default.
- W4385972009 cites W4385232775 @default.
- W4385972009 cites W64279091 @default.
- W4385972009 doi "https://doi.org/10.1101/2023.08.18.553831" @default.
- W4385972009 hasPublicationYear "2023" @default.
- W4385972009 type Work @default.
- W4385972009 citedByCount "0" @default.
- W4385972009 crossrefType "posted-content" @default.
- W4385972009 hasAuthorship W4385972009A5022865589 @default.
- W4385972009 hasAuthorship W4385972009A5061886482 @default.
- W4385972009 hasBestOaLocation W43859720091 @default.
- W4385972009 hasConcept C111472728 @default.
- W4385972009 hasConcept C119857082 @default.
- W4385972009 hasConcept C120822770 @default.
- W4385972009 hasConcept C138885662 @default.
- W4385972009 hasConcept C139807058 @default.
- W4385972009 hasConcept C154945302 @default.
- W4385972009 hasConcept C165287380 @default.
- W4385972009 hasConcept C169760540 @default.
- W4385972009 hasConcept C18903297 @default.
- W4385972009 hasConcept C41008148 @default.
- W4385972009 hasConcept C50644808 @default.
- W4385972009 hasConcept C56739046 @default.
- W4385972009 hasConcept C75268714 @default.
- W4385972009 hasConcept C77967617 @default.
- W4385972009 hasConcept C79416737 @default.
- W4385972009 hasConcept C81917197 @default.
- W4385972009 hasConcept C86803240 @default.
- W4385972009 hasConcept C89611455 @default.
- W4385972009 hasConceptScore W4385972009C111472728 @default.
- W4385972009 hasConceptScore W4385972009C119857082 @default.
- W4385972009 hasConceptScore W4385972009C120822770 @default.
- W4385972009 hasConceptScore W4385972009C138885662 @default.
- W4385972009 hasConceptScore W4385972009C139807058 @default.
- W4385972009 hasConceptScore W4385972009C154945302 @default.
- W4385972009 hasConceptScore W4385972009C165287380 @default.
- W4385972009 hasConceptScore W4385972009C169760540 @default.
- W4385972009 hasConceptScore W4385972009C18903297 @default.
- W4385972009 hasConceptScore W4385972009C41008148 @default.
- W4385972009 hasConceptScore W4385972009C50644808 @default.
- W4385972009 hasConceptScore W4385972009C56739046 @default.
- W4385972009 hasConceptScore W4385972009C75268714 @default.
- W4385972009 hasConceptScore W4385972009C77967617 @default.
- W4385972009 hasConceptScore W4385972009C79416737 @default.
- W4385972009 hasConceptScore W4385972009C81917197 @default.
- W4385972009 hasConceptScore W4385972009C86803240 @default.
- W4385972009 hasConceptScore W4385972009C89611455 @default.
- W4385972009 hasLocation W43859720091 @default.