Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385972016> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4385972016 endingPage "047104" @default.
- W4385972016 startingPage "047104" @default.
- W4385972016 abstract "Electronic nose (eNose) technology is an emerging diagnostic application, using artificial intelligence to classify human breath patterns. These patterns can be used to diagnose medical conditions. Sarcoidosis is an often difficult to diagnose disease, as no standard procedure or conclusive test exists. An accurate diagnostic model based on eNose data could therefore be helpful in clinical decision-making. The aim of this paper is to evaluate the performance of various dimensionality reduction methods and classifiers in order to design an accurate diagnostic model for sarcoidosis. Various methods of dimensionality reduction and multiple hyperparameter optimised classifiers were tested and cross-validated on a dataset of patients with pulmonary sarcoidosis (n= 224) and other interstitial lung disease (n= 317). Best performing methods were selected to create a model to diagnose patients with sarcoidosis. Nested cross-validation was applied to calculate the overall diagnostic performance. A classification model with feature selection and random forest (RF) classifier showed the highest accuracy. The overall diagnostic performance resulted in an accuracy of 87.1% and area-under-the-curve of 91.2%. After comparing different dimensionality reduction methods and classifiers, a highly accurate model to diagnose a patient with sarcoidosis using eNose data was created. The RF classifier and feature selection showed the best performance. The presented systematic approach could also be applied to other eNose datasets to compare methods and select the optimal diagnostic model." @default.
- W4385972016 created "2023-08-19" @default.
- W4385972016 creator A5022754561 @default.
- W4385972016 creator A5038846995 @default.
- W4385972016 creator A5068771707 @default.
- W4385972016 creator A5082613025 @default.
- W4385972016 creator A5092659952 @default.
- W4385972016 creator A5092659953 @default.
- W4385972016 creator A5092659954 @default.
- W4385972016 creator A5092659955 @default.
- W4385972016 date "2023-08-29" @default.
- W4385972016 modified "2023-10-06" @default.
- W4385972016 title "Evaluation of different classification methods using electronic nose data to diagnose sarcoidosis" @default.
- W4385972016 cites W1730693163 @default.
- W4385972016 cites W2005094880 @default.
- W4385972016 cites W2115358726 @default.
- W4385972016 cites W2156892464 @default.
- W4385972016 cites W2218435475 @default.
- W4385972016 cites W2742419551 @default.
- W4385972016 cites W2783480163 @default.
- W4385972016 cites W2807326971 @default.
- W4385972016 cites W2913204420 @default.
- W4385972016 cites W2980620999 @default.
- W4385972016 cites W3012070578 @default.
- W4385972016 cites W3015330439 @default.
- W4385972016 cites W3016685338 @default.
- W4385972016 cites W3036458852 @default.
- W4385972016 cites W3046234459 @default.
- W4385972016 cites W3201380385 @default.
- W4385972016 cites W3210614268 @default.
- W4385972016 cites W4211150982 @default.
- W4385972016 cites W4220986416 @default.
- W4385972016 doi "https://doi.org/10.1088/1752-7163/acf1bf" @default.
- W4385972016 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37595574" @default.
- W4385972016 hasPublicationYear "2023" @default.
- W4385972016 type Work @default.
- W4385972016 citedByCount "0" @default.
- W4385972016 crossrefType "journal-article" @default.
- W4385972016 hasAuthorship W4385972016A5022754561 @default.
- W4385972016 hasAuthorship W4385972016A5038846995 @default.
- W4385972016 hasAuthorship W4385972016A5068771707 @default.
- W4385972016 hasAuthorship W4385972016A5082613025 @default.
- W4385972016 hasAuthorship W4385972016A5092659952 @default.
- W4385972016 hasAuthorship W4385972016A5092659953 @default.
- W4385972016 hasAuthorship W4385972016A5092659954 @default.
- W4385972016 hasAuthorship W4385972016A5092659955 @default.
- W4385972016 hasConcept C106135958 @default.
- W4385972016 hasConcept C111030470 @default.
- W4385972016 hasConcept C119857082 @default.
- W4385972016 hasConcept C124101348 @default.
- W4385972016 hasConcept C142724271 @default.
- W4385972016 hasConcept C148483581 @default.
- W4385972016 hasConcept C153180895 @default.
- W4385972016 hasConcept C154945302 @default.
- W4385972016 hasConcept C169258074 @default.
- W4385972016 hasConcept C23895516 @default.
- W4385972016 hasConcept C2781301800 @default.
- W4385972016 hasConcept C41008148 @default.
- W4385972016 hasConcept C70518039 @default.
- W4385972016 hasConcept C71924100 @default.
- W4385972016 hasConcept C8642999 @default.
- W4385972016 hasConcept C95623464 @default.
- W4385972016 hasConceptScore W4385972016C106135958 @default.
- W4385972016 hasConceptScore W4385972016C111030470 @default.
- W4385972016 hasConceptScore W4385972016C119857082 @default.
- W4385972016 hasConceptScore W4385972016C124101348 @default.
- W4385972016 hasConceptScore W4385972016C142724271 @default.
- W4385972016 hasConceptScore W4385972016C148483581 @default.
- W4385972016 hasConceptScore W4385972016C153180895 @default.
- W4385972016 hasConceptScore W4385972016C154945302 @default.
- W4385972016 hasConceptScore W4385972016C169258074 @default.
- W4385972016 hasConceptScore W4385972016C23895516 @default.
- W4385972016 hasConceptScore W4385972016C2781301800 @default.
- W4385972016 hasConceptScore W4385972016C41008148 @default.
- W4385972016 hasConceptScore W4385972016C70518039 @default.
- W4385972016 hasConceptScore W4385972016C71924100 @default.
- W4385972016 hasConceptScore W4385972016C8642999 @default.
- W4385972016 hasConceptScore W4385972016C95623464 @default.
- W4385972016 hasIssue "4" @default.
- W4385972016 hasLocation W43859720161 @default.
- W4385972016 hasLocation W43859720162 @default.
- W4385972016 hasOpenAccess W4385972016 @default.
- W4385972016 hasPrimaryLocation W43859720161 @default.
- W4385972016 hasRelatedWork W1596740836 @default.
- W4385972016 hasRelatedWork W1982974357 @default.
- W4385972016 hasRelatedWork W2056596841 @default.
- W4385972016 hasRelatedWork W2080410076 @default.
- W4385972016 hasRelatedWork W2081756653 @default.
- W4385972016 hasRelatedWork W2086179153 @default.
- W4385972016 hasRelatedWork W2349581046 @default.
- W4385972016 hasRelatedWork W2523761394 @default.
- W4385972016 hasRelatedWork W2536125181 @default.
- W4385972016 hasRelatedWork W2912293709 @default.
- W4385972016 hasVolume "17" @default.
- W4385972016 isParatext "false" @default.
- W4385972016 isRetracted "false" @default.
- W4385972016 workType "article" @default.