Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385973180> ?p ?o ?g. }
- W4385973180 endingPage "105621" @default.
- W4385973180 startingPage "105621" @default.
- W4385973180 abstract "This study utilizes hyperspectral imaging technology to capture spectral images of three grades of green tea. Reflectance spectra of the three quality grades of tea, namely Grade A, Grade B, and Grade C, were collected between 370 nm and 1040 nm. Three methods, namely Savitzky-Golay (SG) smoothing, standard normal variable (SNV), and first derivative (FD), were employed to preprocess the raw spectra. Dimensionality reduction and visual display were accomplished using t-distributed stochastic neighbor embedding, and the preprocessed spectra with the most optimal visualization effect were selected to extract the key wavelengths using principal components analysis (PCA). The extracted key bands could aid in achieving the detection of tea quality grades, as tea polyphenols are more sensitive between 650 and 800 nm, where 664 nm and 765 nm represent the key wavelengths of catechins. K-nearest neighbor (KNN) and support vector machine (SVM) discriminative models were deployed to model the key wavelengths. The model built by FD-PCA-SVM exhibited the best discriminant effect, with an accuracy of 93.8 % in the training set and 98.2 % in the test set. FD-PCA-SVM discriminant model was used to identify and visualize the tea quality grades with good results. Hyperspectral imaging technology is well-suited to identifying the quality of green tea." @default.
- W4385973180 created "2023-08-19" @default.
- W4385973180 creator A5019707070 @default.
- W4385973180 creator A5020713851 @default.
- W4385973180 creator A5025289095 @default.
- W4385973180 creator A5031870141 @default.
- W4385973180 creator A5039985101 @default.
- W4385973180 creator A5063292611 @default.
- W4385973180 creator A5071399044 @default.
- W4385973180 creator A5075782732 @default.
- W4385973180 creator A5079849954 @default.
- W4385973180 creator A5080702570 @default.
- W4385973180 date "2023-10-01" @default.
- W4385973180 modified "2023-10-16" @default.
- W4385973180 title "A nondestructive method for determination of green tea quality by hyperspectral imaging" @default.
- W4385973180 cites W1966888073 @default.
- W4385973180 cites W2000519650 @default.
- W4385973180 cites W2000732112 @default.
- W4385973180 cites W2016090370 @default.
- W4385973180 cites W2052097835 @default.
- W4385973180 cites W2057308886 @default.
- W4385973180 cites W2064552149 @default.
- W4385973180 cites W2069116637 @default.
- W4385973180 cites W239034960 @default.
- W4385973180 cites W2592180504 @default.
- W4385973180 cites W2792526012 @default.
- W4385973180 cites W2799386202 @default.
- W4385973180 cites W2807342108 @default.
- W4385973180 cites W2890189655 @default.
- W4385973180 cites W2892642930 @default.
- W4385973180 cites W2928386952 @default.
- W4385973180 cites W2956368841 @default.
- W4385973180 cites W3011583930 @default.
- W4385973180 cites W3013423890 @default.
- W4385973180 cites W3078753841 @default.
- W4385973180 cites W3093009805 @default.
- W4385973180 cites W3113269195 @default.
- W4385973180 cites W3119925256 @default.
- W4385973180 cites W3120406016 @default.
- W4385973180 cites W3134651921 @default.
- W4385973180 cites W3146257408 @default.
- W4385973180 cites W3154676868 @default.
- W4385973180 cites W3158667790 @default.
- W4385973180 cites W3161414162 @default.
- W4385973180 cites W3164176809 @default.
- W4385973180 cites W3178411608 @default.
- W4385973180 cites W3191369598 @default.
- W4385973180 cites W3198518499 @default.
- W4385973180 cites W3200581791 @default.
- W4385973180 cites W3214200389 @default.
- W4385973180 cites W4210780191 @default.
- W4385973180 cites W4211017026 @default.
- W4385973180 cites W4281631001 @default.
- W4385973180 cites W4290708182 @default.
- W4385973180 cites W952443953 @default.
- W4385973180 doi "https://doi.org/10.1016/j.jfca.2023.105621" @default.
- W4385973180 hasPublicationYear "2023" @default.
- W4385973180 type Work @default.
- W4385973180 citedByCount "0" @default.
- W4385973180 crossrefType "journal-article" @default.
- W4385973180 hasAuthorship W4385973180A5019707070 @default.
- W4385973180 hasAuthorship W4385973180A5020713851 @default.
- W4385973180 hasAuthorship W4385973180A5025289095 @default.
- W4385973180 hasAuthorship W4385973180A5031870141 @default.
- W4385973180 hasAuthorship W4385973180A5039985101 @default.
- W4385973180 hasAuthorship W4385973180A5063292611 @default.
- W4385973180 hasAuthorship W4385973180A5071399044 @default.
- W4385973180 hasAuthorship W4385973180A5075782732 @default.
- W4385973180 hasAuthorship W4385973180A5079849954 @default.
- W4385973180 hasAuthorship W4385973180A5080702570 @default.
- W4385973180 hasConcept C119857082 @default.
- W4385973180 hasConcept C12267149 @default.
- W4385973180 hasConcept C151304367 @default.
- W4385973180 hasConcept C153180895 @default.
- W4385973180 hasConcept C154945302 @default.
- W4385973180 hasConcept C159078339 @default.
- W4385973180 hasConcept C27438332 @default.
- W4385973180 hasConcept C31972630 @default.
- W4385973180 hasConcept C33923547 @default.
- W4385973180 hasConcept C3770464 @default.
- W4385973180 hasConcept C41008148 @default.
- W4385973180 hasConcept C69738355 @default.
- W4385973180 hasConcept C70518039 @default.
- W4385973180 hasConcept C97931131 @default.
- W4385973180 hasConceptScore W4385973180C119857082 @default.
- W4385973180 hasConceptScore W4385973180C12267149 @default.
- W4385973180 hasConceptScore W4385973180C151304367 @default.
- W4385973180 hasConceptScore W4385973180C153180895 @default.
- W4385973180 hasConceptScore W4385973180C154945302 @default.
- W4385973180 hasConceptScore W4385973180C159078339 @default.
- W4385973180 hasConceptScore W4385973180C27438332 @default.
- W4385973180 hasConceptScore W4385973180C31972630 @default.
- W4385973180 hasConceptScore W4385973180C33923547 @default.
- W4385973180 hasConceptScore W4385973180C3770464 @default.
- W4385973180 hasConceptScore W4385973180C41008148 @default.
- W4385973180 hasConceptScore W4385973180C69738355 @default.
- W4385973180 hasConceptScore W4385973180C70518039 @default.
- W4385973180 hasConceptScore W4385973180C97931131 @default.