Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385979040> ?p ?o ?g. }
- W4385979040 endingPage "3574" @default.
- W4385979040 startingPage "3574" @default.
- W4385979040 abstract "A prompt and precise estimation of traffic conditions on the scale of a few minutes by analyzing past data is crucial for establishing an effective intelligent traffic management system. Nevertheless, because of the irregularity and nonlinear features of traffic flow data, developing a prediction model with excellent robustness poses a significant obstacle. Therefore, we propose genetic-search-algorithm-improved kernel extreme learning machine, termed GA-KELM, to unleash the potential of improved prediction accuracy and generalization performance. By substituting the inner product with a kernel function, the accuracy of short-term traffic flow forecasting using extreme learning machines is enhanced. The genetic algorithm evades manual traversal of all possible parameters in searching for the optimal solution. The prediction performance of GA-KELM is evaluated on eleven benchmark datasets and compared with several state-of-the-art models. There are four benchmark datasets from the A1, A2, A4, and A8 highways near the ring road of Amsterdam, and the others are D1, D2, D3, D4, D5, D6, and P, close to Heathrow airport on the M25 expressway. On A1, A2, A4, and A8, the RMSEs of the GA-KELM model are 284.67 vehs/h, 193.83 vehs/h, 220.89 vehs/h, and 163.02 vehs/h, respectively, while the MAPEs of the GA-KELM model are 11.67%, 9.83%, 11.31%, and 12.59%, respectively. The results illustrate that the GA-KELM model is obviously superior to state-of-the-art models." @default.
- W4385979040 created "2023-08-19" @default.
- W4385979040 creator A5013792188 @default.
- W4385979040 creator A5031202827 @default.
- W4385979040 creator A5050008056 @default.
- W4385979040 creator A5088041714 @default.
- W4385979040 creator A5091806934 @default.
- W4385979040 date "2023-08-18" @default.
- W4385979040 modified "2023-10-14" @default.
- W4385979040 title "GA-KELM: Genetic-Algorithm-Improved Kernel Extreme Learning Machine for Traffic Flow Forecasting" @default.
- W4385979040 cites W1544151422 @default.
- W4385979040 cites W1975362087 @default.
- W4385979040 cites W1982978808 @default.
- W4385979040 cites W1983354507 @default.
- W4385979040 cites W1991770012 @default.
- W4385979040 cites W2004353783 @default.
- W4385979040 cites W2026131661 @default.
- W4385979040 cites W2036785686 @default.
- W4385979040 cites W2039211048 @default.
- W4385979040 cites W2049952439 @default.
- W4385979040 cites W2059128538 @default.
- W4385979040 cites W2067553165 @default.
- W4385979040 cites W2075407851 @default.
- W4385979040 cites W2084277167 @default.
- W4385979040 cites W2093134417 @default.
- W4385979040 cites W2111072639 @default.
- W4385979040 cites W2114354594 @default.
- W4385979040 cites W2131819535 @default.
- W4385979040 cites W2135009431 @default.
- W4385979040 cites W2165991108 @default.
- W4385979040 cites W2461102131 @default.
- W4385979040 cites W2510808060 @default.
- W4385979040 cites W2601912627 @default.
- W4385979040 cites W2728483268 @default.
- W4385979040 cites W2795012238 @default.
- W4385979040 cites W2910982572 @default.
- W4385979040 cites W2923528232 @default.
- W4385979040 cites W2942505192 @default.
- W4385979040 cites W2972303719 @default.
- W4385979040 cites W2998525360 @default.
- W4385979040 cites W3004361679 @default.
- W4385979040 cites W3008996014 @default.
- W4385979040 cites W3170668730 @default.
- W4385979040 cites W3207461654 @default.
- W4385979040 cites W4200169796 @default.
- W4385979040 cites W4244532478 @default.
- W4385979040 cites W4377197269 @default.
- W4385979040 cites W4378907135 @default.
- W4385979040 cites W4379055341 @default.
- W4385979040 cites W594114979 @default.
- W4385979040 doi "https://doi.org/10.3390/math11163574" @default.
- W4385979040 hasPublicationYear "2023" @default.
- W4385979040 type Work @default.
- W4385979040 citedByCount "2" @default.
- W4385979040 countsByYear W43859790402023 @default.
- W4385979040 crossrefType "journal-article" @default.
- W4385979040 hasAuthorship W4385979040A5013792188 @default.
- W4385979040 hasAuthorship W4385979040A5031202827 @default.
- W4385979040 hasAuthorship W4385979040A5050008056 @default.
- W4385979040 hasAuthorship W4385979040A5088041714 @default.
- W4385979040 hasAuthorship W4385979040A5091806934 @default.
- W4385979040 hasBestOaLocation W43859790401 @default.
- W4385979040 hasConcept C104317684 @default.
- W4385979040 hasConcept C11413529 @default.
- W4385979040 hasConcept C114614502 @default.
- W4385979040 hasConcept C119857082 @default.
- W4385979040 hasConcept C124101348 @default.
- W4385979040 hasConcept C13280743 @default.
- W4385979040 hasConcept C134306372 @default.
- W4385979040 hasConcept C154945302 @default.
- W4385979040 hasConcept C177148314 @default.
- W4385979040 hasConcept C185592680 @default.
- W4385979040 hasConcept C185798385 @default.
- W4385979040 hasConcept C205649164 @default.
- W4385979040 hasConcept C207512268 @default.
- W4385979040 hasConcept C2780150128 @default.
- W4385979040 hasConcept C33923547 @default.
- W4385979040 hasConcept C38652104 @default.
- W4385979040 hasConcept C41008148 @default.
- W4385979040 hasConcept C50644808 @default.
- W4385979040 hasConcept C55493867 @default.
- W4385979040 hasConcept C63479239 @default.
- W4385979040 hasConcept C74193536 @default.
- W4385979040 hasConcept C8880873 @default.
- W4385979040 hasConceptScore W4385979040C104317684 @default.
- W4385979040 hasConceptScore W4385979040C11413529 @default.
- W4385979040 hasConceptScore W4385979040C114614502 @default.
- W4385979040 hasConceptScore W4385979040C119857082 @default.
- W4385979040 hasConceptScore W4385979040C124101348 @default.
- W4385979040 hasConceptScore W4385979040C13280743 @default.
- W4385979040 hasConceptScore W4385979040C134306372 @default.
- W4385979040 hasConceptScore W4385979040C154945302 @default.
- W4385979040 hasConceptScore W4385979040C177148314 @default.
- W4385979040 hasConceptScore W4385979040C185592680 @default.
- W4385979040 hasConceptScore W4385979040C185798385 @default.
- W4385979040 hasConceptScore W4385979040C205649164 @default.
- W4385979040 hasConceptScore W4385979040C207512268 @default.
- W4385979040 hasConceptScore W4385979040C2780150128 @default.