Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385979381> ?p ?o ?g. }
- W4385979381 endingPage "12567" @default.
- W4385979381 startingPage "12567" @default.
- W4385979381 abstract "The increasing discharge of nitrogen nutrients into watersheds calls for assessing and predicting nitrogen inputs, as an important basis for formulating management strategies. The traditional net anthropogenic nitrogen inputs (NANI) budgeting model relies on 45 predictor variables, for which data are sourced from local or national statistical yearbooks. The large number of predictor variables involved makes NANI accounting difficult, and the missingness of data reduces its accuracy. This study aimed to build a prediction model for NANI based on as few predictor variables as possible. We built a prediction model based on the last 30 years of NANI data from the watershed of the Yangtze River in China, with readily available and complete socio-economic predictor variables (per gross domestic product, population density) through a hierarchical spatially varying coefficient process model (HSVC), which exploits underlying spatial associations within 11 sub-basins and the spatially varying impacts of predictor variables to improve the accuracy of NANI prediction. The results showed that the hierarchical spatially varying coefficient model performed better than the Gaussian process model (GP) and the spatio-temporal dynamic linear model (DLM). The predicted NANIs within the entire catchment of the Yangtze River in 2025 and in 2030 were 11,522.87 kg N km−2 to 12,760.65 kg N km−2, respectively, showing an obvious increasing trend. Nitrogen fertilizer application was predicted to be 5755.1 kg N km−2 in 2025, which was the most significant source of NANI. In addition, the point prediction and 95% interval prediction of NANI in the watershed of the Yangtze River for 2025 and 2030 were also provided. Our approach provides a simple and easy-to-use method for NANI prediction." @default.
- W4385979381 created "2023-08-19" @default.
- W4385979381 creator A5020296302 @default.
- W4385979381 creator A5046670716 @default.
- W4385979381 creator A5069315147 @default.
- W4385979381 creator A5083840026 @default.
- W4385979381 date "2023-08-18" @default.
- W4385979381 modified "2023-10-14" @default.
- W4385979381 title "Hierarchical Spatially Varying Coefficient Process Regression for Modeling Net Anthropogenic Nitrogen Inputs (NANI) from the Watershed of the Yangtze River, China" @default.
- W4385979381 cites W1723286034 @default.
- W4385979381 cites W1898500083 @default.
- W4385979381 cites W1965269354 @default.
- W4385979381 cites W1972806598 @default.
- W4385979381 cites W1981314783 @default.
- W4385979381 cites W1998568114 @default.
- W4385979381 cites W2000062200 @default.
- W4385979381 cites W2003471362 @default.
- W4385979381 cites W2005735434 @default.
- W4385979381 cites W2006952252 @default.
- W4385979381 cites W2031459546 @default.
- W4385979381 cites W2048719807 @default.
- W4385979381 cites W2068388041 @default.
- W4385979381 cites W2071439943 @default.
- W4385979381 cites W2079775869 @default.
- W4385979381 cites W2087818722 @default.
- W4385979381 cites W2091007910 @default.
- W4385979381 cites W2118898434 @default.
- W4385979381 cites W2127874106 @default.
- W4385979381 cites W2162167685 @default.
- W4385979381 cites W2236842197 @default.
- W4385979381 cites W2321898480 @default.
- W4385979381 cites W2333841971 @default.
- W4385979381 cites W2555645924 @default.
- W4385979381 cites W2607191902 @default.
- W4385979381 cites W2811030111 @default.
- W4385979381 cites W2910190524 @default.
- W4385979381 cites W2918137318 @default.
- W4385979381 cites W2993535914 @default.
- W4385979381 cites W2998784363 @default.
- W4385979381 cites W3005353053 @default.
- W4385979381 cites W3011829269 @default.
- W4385979381 cites W3016262665 @default.
- W4385979381 cites W3136438857 @default.
- W4385979381 cites W3173598262 @default.
- W4385979381 cites W4220954614 @default.
- W4385979381 cites W4255433472 @default.
- W4385979381 cites W4293203176 @default.
- W4385979381 cites W4313894119 @default.
- W4385979381 doi "https://doi.org/10.3390/su151612567" @default.
- W4385979381 hasPublicationYear "2023" @default.
- W4385979381 type Work @default.
- W4385979381 citedByCount "0" @default.
- W4385979381 crossrefType "journal-article" @default.
- W4385979381 hasAuthorship W4385979381A5020296302 @default.
- W4385979381 hasAuthorship W4385979381A5046670716 @default.
- W4385979381 hasAuthorship W4385979381A5069315147 @default.
- W4385979381 hasAuthorship W4385979381A5083840026 @default.
- W4385979381 hasBestOaLocation W43859793811 @default.
- W4385979381 hasConcept C105795698 @default.
- W4385979381 hasConcept C119857082 @default.
- W4385979381 hasConcept C121955636 @default.
- W4385979381 hasConcept C126645576 @default.
- W4385979381 hasConcept C127413603 @default.
- W4385979381 hasConcept C144133560 @default.
- W4385979381 hasConcept C149782125 @default.
- W4385979381 hasConcept C150547873 @default.
- W4385979381 hasConcept C152877465 @default.
- W4385979381 hasConcept C159390177 @default.
- W4385979381 hasConcept C187320778 @default.
- W4385979381 hasConcept C196083921 @default.
- W4385979381 hasConcept C205649164 @default.
- W4385979381 hasConcept C33923547 @default.
- W4385979381 hasConcept C39432304 @default.
- W4385979381 hasConcept C41008148 @default.
- W4385979381 hasConcept C48921125 @default.
- W4385979381 hasConcept C58640448 @default.
- W4385979381 hasConcept C76886044 @default.
- W4385979381 hasConcept C83546350 @default.
- W4385979381 hasConceptScore W4385979381C105795698 @default.
- W4385979381 hasConceptScore W4385979381C119857082 @default.
- W4385979381 hasConceptScore W4385979381C121955636 @default.
- W4385979381 hasConceptScore W4385979381C126645576 @default.
- W4385979381 hasConceptScore W4385979381C127413603 @default.
- W4385979381 hasConceptScore W4385979381C144133560 @default.
- W4385979381 hasConceptScore W4385979381C149782125 @default.
- W4385979381 hasConceptScore W4385979381C150547873 @default.
- W4385979381 hasConceptScore W4385979381C152877465 @default.
- W4385979381 hasConceptScore W4385979381C159390177 @default.
- W4385979381 hasConceptScore W4385979381C187320778 @default.
- W4385979381 hasConceptScore W4385979381C196083921 @default.
- W4385979381 hasConceptScore W4385979381C205649164 @default.
- W4385979381 hasConceptScore W4385979381C33923547 @default.
- W4385979381 hasConceptScore W4385979381C39432304 @default.
- W4385979381 hasConceptScore W4385979381C41008148 @default.
- W4385979381 hasConceptScore W4385979381C48921125 @default.
- W4385979381 hasConceptScore W4385979381C58640448 @default.
- W4385979381 hasConceptScore W4385979381C76886044 @default.
- W4385979381 hasConceptScore W4385979381C83546350 @default.