Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385992020> ?p ?o ?g. }
- W4385992020 endingPage "410" @default.
- W4385992020 startingPage "395" @default.
- W4385992020 abstract "Due to the idiosyncrasies of historical document images (HDI), growing attention over the last decades is being paid for proposing robust HDI analysis solutions. Many research studies have shown that Gabor filters are among the low-level descriptors that best characterize texture information in HDI. On the other side, deep neural networks (DNN) have been successfully used for HDI segmentation. As a consequence, we propose in this paper a HDI segmentation method that is based on combining Gabor features and DNN. The segmentation method focuses on classifying each document image pixel to either graphic, text or background. The novelty of the proposed method lies mainly in feeding a DNN with a Gabor filtered image (obtained by applying specific multichannel Gabor filters) instead of an original image as input. The proposed method is decomposed into three steps: a) filtered image generation using Gabor filters, b) feature learning with stacked autoencoder, and c) image segmentation with 2D U-Net. In order to evaluate its performance, experiments are conducted using two different datasets. The results are reported and compared with those of a recent state-of-the-art method." @default.
- W4385992020 created "2023-08-19" @default.
- W4385992020 creator A5034933711 @default.
- W4385992020 creator A5062081721 @default.
- W4385992020 creator A5070163463 @default.
- W4385992020 date "2023-01-01" @default.
- W4385992020 modified "2023-10-14" @default.
- W4385992020 title "Historical Document Image Segmentation Combining Deep Learning and Gabor Features" @default.
- W4385992020 cites W1901129140 @default.
- W4385992020 cites W1973804542 @default.
- W4385992020 cites W2015178565 @default.
- W4385992020 cites W2016275632 @default.
- W4385992020 cites W2020558856 @default.
- W4385992020 cites W2033801164 @default.
- W4385992020 cites W2046333072 @default.
- W4385992020 cites W2077221566 @default.
- W4385992020 cites W2106199535 @default.
- W4385992020 cites W2122237496 @default.
- W4385992020 cites W2194775991 @default.
- W4385992020 cites W2488822897 @default.
- W4385992020 cites W2547018007 @default.
- W4385992020 cites W2571037679 @default.
- W4385992020 cites W2610691757 @default.
- W4385992020 cites W2619262405 @default.
- W4385992020 cites W2622834146 @default.
- W4385992020 cites W2765084367 @default.
- W4385992020 cites W2768926640 @default.
- W4385992020 cites W2770021682 @default.
- W4385992020 cites W2785799309 @default.
- W4385992020 cites W2800600340 @default.
- W4385992020 cites W2803820940 @default.
- W4385992020 cites W2804320583 @default.
- W4385992020 cites W2889064910 @default.
- W4385992020 cites W2897861822 @default.
- W4385992020 cites W2906084352 @default.
- W4385992020 cites W2953786982 @default.
- W4385992020 cites W2962903028 @default.
- W4385992020 cites W3003336019 @default.
- W4385992020 cites W3028411153 @default.
- W4385992020 cites W3092694106 @default.
- W4385992020 cites W3106997736 @default.
- W4385992020 cites W3112637210 @default.
- W4385992020 cites W3166585402 @default.
- W4385992020 cites W3192524834 @default.
- W4385992020 cites W3196289623 @default.
- W4385992020 cites W3196290082 @default.
- W4385992020 cites W3205260761 @default.
- W4385992020 cites W4205487349 @default.
- W4385992020 cites W747111618 @default.
- W4385992020 doi "https://doi.org/10.1007/978-3-031-41685-9_25" @default.
- W4385992020 hasPublicationYear "2023" @default.
- W4385992020 type Work @default.
- W4385992020 citedByCount "0" @default.
- W4385992020 crossrefType "book-chapter" @default.
- W4385992020 hasAuthorship W4385992020A5034933711 @default.
- W4385992020 hasAuthorship W4385992020A5062081721 @default.
- W4385992020 hasAuthorship W4385992020A5070163463 @default.
- W4385992020 hasConcept C101738243 @default.
- W4385992020 hasConcept C108583219 @default.
- W4385992020 hasConcept C115961682 @default.
- W4385992020 hasConcept C124504099 @default.
- W4385992020 hasConcept C136902061 @default.
- W4385992020 hasConcept C138885662 @default.
- W4385992020 hasConcept C153180895 @default.
- W4385992020 hasConcept C154945302 @default.
- W4385992020 hasConcept C160633673 @default.
- W4385992020 hasConcept C196216189 @default.
- W4385992020 hasConcept C2776401178 @default.
- W4385992020 hasConcept C2779883129 @default.
- W4385992020 hasConcept C31972630 @default.
- W4385992020 hasConcept C41008148 @default.
- W4385992020 hasConcept C41895202 @default.
- W4385992020 hasConcept C46286280 @default.
- W4385992020 hasConcept C47432892 @default.
- W4385992020 hasConcept C50644808 @default.
- W4385992020 hasConcept C63099799 @default.
- W4385992020 hasConcept C65885262 @default.
- W4385992020 hasConcept C89600930 @default.
- W4385992020 hasConceptScore W4385992020C101738243 @default.
- W4385992020 hasConceptScore W4385992020C108583219 @default.
- W4385992020 hasConceptScore W4385992020C115961682 @default.
- W4385992020 hasConceptScore W4385992020C124504099 @default.
- W4385992020 hasConceptScore W4385992020C136902061 @default.
- W4385992020 hasConceptScore W4385992020C138885662 @default.
- W4385992020 hasConceptScore W4385992020C153180895 @default.
- W4385992020 hasConceptScore W4385992020C154945302 @default.
- W4385992020 hasConceptScore W4385992020C160633673 @default.
- W4385992020 hasConceptScore W4385992020C196216189 @default.
- W4385992020 hasConceptScore W4385992020C2776401178 @default.
- W4385992020 hasConceptScore W4385992020C2779883129 @default.
- W4385992020 hasConceptScore W4385992020C31972630 @default.
- W4385992020 hasConceptScore W4385992020C41008148 @default.
- W4385992020 hasConceptScore W4385992020C41895202 @default.
- W4385992020 hasConceptScore W4385992020C46286280 @default.
- W4385992020 hasConceptScore W4385992020C47432892 @default.
- W4385992020 hasConceptScore W4385992020C50644808 @default.
- W4385992020 hasConceptScore W4385992020C63099799 @default.
- W4385992020 hasConceptScore W4385992020C65885262 @default.