Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385992382> ?p ?o ?g. }
- W4385992382 endingPage "1148" @default.
- W4385992382 startingPage "1127" @default.
- W4385992382 abstract "Acoustic propagation models are widely used in numerous oceanic and underwater applications. Most conventional models are approximate solutions of the acoustic wave equation, and require accurate environmental knowledge to be available beforehand. Environmental parameters may not always be easily or accurately measurable. While data-driven techniques might allow us to model acoustic propagation without the need for extensive prior environmental knowledge, such techniques tend to be data-hungry and often infeasible in oceanic applications where data collection is difficult and expensive. We propose a data-aided physics-based high-frequency acoustic propagation modeling approach that enables us to train models with only a small amount of data. The proposed framework is not only data-efficient, but also offers flexibility to incorporate varying degrees of environmental knowledge and generalizes well to permit extrapolation beyond the area where the data were collected. We demonstrate the feasibility and applicability of our method through four numerical case studies, and one controlled experiment. We also benchmark our method's performance against two classical data-driven techniques—Gaussian process regression and deep neural network." @default.
- W4385992382 created "2023-08-19" @default.
- W4385992382 creator A5067178295 @default.
- W4385992382 creator A5067801953 @default.
- W4385992382 date "2023-10-01" @default.
- W4385992382 modified "2023-10-15" @default.
- W4385992382 title "Data-Aided Underwater Acoustic Ray Propagation Modeling" @default.
- W4385992382 cites W143180993 @default.
- W4385992382 cites W1502922572 @default.
- W4385992382 cites W1582774210 @default.
- W4385992382 cites W1654554111 @default.
- W4385992382 cites W1901616594 @default.
- W4385992382 cites W1964115502 @default.
- W4385992382 cites W1965093219 @default.
- W4385992382 cites W1968081634 @default.
- W4385992382 cites W1993339282 @default.
- W4385992382 cites W1994005439 @default.
- W4385992382 cites W1995248466 @default.
- W4385992382 cites W2005578206 @default.
- W4385992382 cites W2036159437 @default.
- W4385992382 cites W2072566913 @default.
- W4385992382 cites W2078109975 @default.
- W4385992382 cites W2081328370 @default.
- W4385992382 cites W2109100930 @default.
- W4385992382 cites W2117678320 @default.
- W4385992382 cites W2128287793 @default.
- W4385992382 cites W2137983211 @default.
- W4385992382 cites W2164260031 @default.
- W4385992382 cites W2180748755 @default.
- W4385992382 cites W224823400 @default.
- W4385992382 cites W2535198773 @default.
- W4385992382 cites W2594025908 @default.
- W4385992382 cites W2606981059 @default.
- W4385992382 cites W2734256217 @default.
- W4385992382 cites W2745110207 @default.
- W4385992382 cites W2899283552 @default.
- W4385992382 cites W2915854813 @default.
- W4385992382 cites W2967127111 @default.
- W4385992382 cites W2970227300 @default.
- W4385992382 cites W2986457312 @default.
- W4385992382 cites W2987286001 @default.
- W4385992382 cites W2998555693 @default.
- W4385992382 cites W2999026783 @default.
- W4385992382 cites W3000508506 @default.
- W4385992382 cites W3091942289 @default.
- W4385992382 cites W3127853565 @default.
- W4385992382 cites W3185585276 @default.
- W4385992382 cites W3207976480 @default.
- W4385992382 cites W347723050 @default.
- W4385992382 cites W4200521491 @default.
- W4385992382 cites W4226244456 @default.
- W4385992382 cites W4233110362 @default.
- W4385992382 cites W4236761681 @default.
- W4385992382 cites W4248782283 @default.
- W4385992382 cites W4255303713 @default.
- W4385992382 cites W4295338845 @default.
- W4385992382 cites W4306938096 @default.
- W4385992382 cites W4386630594 @default.
- W4385992382 cites W80619366 @default.
- W4385992382 doi "https://doi.org/10.1109/joe.2023.3292417" @default.
- W4385992382 hasPublicationYear "2023" @default.
- W4385992382 type Work @default.
- W4385992382 citedByCount "0" @default.
- W4385992382 crossrefType "journal-article" @default.
- W4385992382 hasAuthorship W4385992382A5067178295 @default.
- W4385992382 hasAuthorship W4385992382A5067801953 @default.
- W4385992382 hasBestOaLocation W43859923822 @default.
- W4385992382 hasConcept C105795698 @default.
- W4385992382 hasConcept C111368507 @default.
- W4385992382 hasConcept C111919701 @default.
- W4385992382 hasConcept C119857082 @default.
- W4385992382 hasConcept C121332964 @default.
- W4385992382 hasConcept C124101348 @default.
- W4385992382 hasConcept C127313418 @default.
- W4385992382 hasConcept C132459708 @default.
- W4385992382 hasConcept C13280743 @default.
- W4385992382 hasConcept C134306372 @default.
- W4385992382 hasConcept C163716315 @default.
- W4385992382 hasConcept C17744445 @default.
- W4385992382 hasConcept C185798385 @default.
- W4385992382 hasConcept C199539241 @default.
- W4385992382 hasConcept C2776356880 @default.
- W4385992382 hasConcept C2780598303 @default.
- W4385992382 hasConcept C33923547 @default.
- W4385992382 hasConcept C41008148 @default.
- W4385992382 hasConcept C50644808 @default.
- W4385992382 hasConcept C61326573 @default.
- W4385992382 hasConcept C62520636 @default.
- W4385992382 hasConcept C67186912 @default.
- W4385992382 hasConcept C67467970 @default.
- W4385992382 hasConcept C77088390 @default.
- W4385992382 hasConcept C81692654 @default.
- W4385992382 hasConcept C98045186 @default.
- W4385992382 hasConcept C98083399 @default.
- W4385992382 hasConceptScore W4385992382C105795698 @default.
- W4385992382 hasConceptScore W4385992382C111368507 @default.
- W4385992382 hasConceptScore W4385992382C111919701 @default.
- W4385992382 hasConceptScore W4385992382C119857082 @default.