Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385999470> ?p ?o ?g. }
- W4385999470 abstract "Abstract Pomology, also known as fruticulture, is a significant contributor to the economies of many nations worldwide. While vertical farming methods are not well-suited for fruit cultivation, substrate-based cultivation is commonly practiced. Vertical farming methods use no soil for cultivation of the plants, and the cultivation is done in vertically stacked layers. Therefore, smaller herbs are best suited for such cultivation, whereas, the majority of the fruit trees are big and woody. Therefore, vertical farming methods are not well suited for fruit trees. However, to maximize fruit production, smarter substrate cultivation methods are needed. Utilizing remote sensing techniques, such as Internet of Things (IoT) devices, agriculture sensors, and cloud computing, allows for precision agriculture and smart farming in autonomous systems. Nevertheless, a lack of understanding of fruit nutrient requirements, growing conditions, and soil health conditions can result in reduced fruit production. To address these challenges, this paper proposes an intelligent model based on machine learning that recommends the best fruit to grow based on prevailing soil and climatic conditions. The system is trained on a dataset that includes details on eleven different fruits, such as Nitrogen (N), Phosphorous (P), Potassium (K), temperature, humidity, pH, and rainfall. The model takes into account the soil type and nutrient contents to recommend the most suitable fruit to grow in the prevailing climate. To enhance the model's efficiency, two novel techniques, Gradient-based Side Sampling (GOSS) and Exclusive Feature Bundling (EFB), have been incorporated. The results show that the proposed system has achieved 99% accuracy in recommending the right fruit based on the given environmental conditions. As a result, this system has the potential to significantly improve the profitability of the pomology industry and boost national economies." @default.
- W4385999470 created "2023-08-20" @default.
- W4385999470 creator A5040155199 @default.
- W4385999470 creator A5048859324 @default.
- W4385999470 creator A5049307628 @default.
- W4385999470 creator A5050760605 @default.
- W4385999470 creator A5052629272 @default.
- W4385999470 creator A5055907404 @default.
- W4385999470 creator A5064443146 @default.
- W4385999470 date "2023-08-19" @default.
- W4385999470 modified "2023-10-12" @default.
- W4385999470 title "Boosting of fruit choices using machine learning-based pomological recommendation system" @default.
- W4385999470 cites W3092345561 @default.
- W4385999470 cites W3163731277 @default.
- W4385999470 cites W3196374881 @default.
- W4385999470 cites W3215484246 @default.
- W4385999470 cites W4200108856 @default.
- W4385999470 cites W4205668372 @default.
- W4385999470 cites W4206606048 @default.
- W4385999470 cites W4207044822 @default.
- W4385999470 cites W4210705382 @default.
- W4385999470 cites W4210726831 @default.
- W4385999470 cites W4211221671 @default.
- W4385999470 cites W4212835260 @default.
- W4385999470 cites W4212885650 @default.
- W4385999470 cites W4214577775 @default.
- W4385999470 cites W4214700402 @default.
- W4385999470 cites W4214903337 @default.
- W4385999470 cites W4220661035 @default.
- W4385999470 cites W4220780516 @default.
- W4385999470 cites W4220846219 @default.
- W4385999470 cites W4220918461 @default.
- W4385999470 cites W4220942399 @default.
- W4385999470 cites W4224883195 @default.
- W4385999470 cites W4225136830 @default.
- W4385999470 cites W4226006895 @default.
- W4385999470 cites W4226100364 @default.
- W4385999470 cites W4226137366 @default.
- W4385999470 cites W4229366418 @default.
- W4385999470 cites W4281491357 @default.
- W4385999470 cites W4281492951 @default.
- W4385999470 cites W4281690062 @default.
- W4385999470 cites W4281724355 @default.
- W4385999470 cites W4281743351 @default.
- W4385999470 cites W4284882665 @default.
- W4385999470 cites W4285093870 @default.
- W4385999470 cites W4285253629 @default.
- W4385999470 cites W4285729923 @default.
- W4385999470 cites W4286209531 @default.
- W4385999470 cites W4287879957 @default.
- W4385999470 cites W4289322375 @default.
- W4385999470 cites W4292870314 @default.
- W4385999470 cites W4294877341 @default.
- W4385999470 cites W4296350376 @default.
- W4385999470 cites W4297614008 @default.
- W4385999470 cites W4301119254 @default.
- W4385999470 cites W4308764412 @default.
- W4385999470 cites W4309006913 @default.
- W4385999470 cites W4309021796 @default.
- W4385999470 cites W4310184709 @default.
- W4385999470 cites W4311974999 @default.
- W4385999470 cites W4312879572 @default.
- W4385999470 cites W4319601835 @default.
- W4385999470 cites W4322770510 @default.
- W4385999470 cites W4362605652 @default.
- W4385999470 doi "https://doi.org/10.1007/s42452-023-05462-0" @default.
- W4385999470 hasPublicationYear "2023" @default.
- W4385999470 type Work @default.
- W4385999470 citedByCount "0" @default.
- W4385999470 crossrefType "journal-article" @default.
- W4385999470 hasAuthorship W4385999470A5040155199 @default.
- W4385999470 hasAuthorship W4385999470A5048859324 @default.
- W4385999470 hasAuthorship W4385999470A5049307628 @default.
- W4385999470 hasAuthorship W4385999470A5050760605 @default.
- W4385999470 hasAuthorship W4385999470A5052629272 @default.
- W4385999470 hasAuthorship W4385999470A5055907404 @default.
- W4385999470 hasAuthorship W4385999470A5064443146 @default.
- W4385999470 hasBestOaLocation W43859994701 @default.
- W4385999470 hasConcept C118518473 @default.
- W4385999470 hasConcept C120217122 @default.
- W4385999470 hasConcept C127413603 @default.
- W4385999470 hasConcept C149635348 @default.
- W4385999470 hasConcept C159390177 @default.
- W4385999470 hasConcept C159750122 @default.
- W4385999470 hasConcept C18903297 @default.
- W4385999470 hasConcept C2992136107 @default.
- W4385999470 hasConcept C39432304 @default.
- W4385999470 hasConcept C41008148 @default.
- W4385999470 hasConcept C54286561 @default.
- W4385999470 hasConcept C81860439 @default.
- W4385999470 hasConcept C86803240 @default.
- W4385999470 hasConcept C88463610 @default.
- W4385999470 hasConceptScore W4385999470C118518473 @default.
- W4385999470 hasConceptScore W4385999470C120217122 @default.
- W4385999470 hasConceptScore W4385999470C127413603 @default.
- W4385999470 hasConceptScore W4385999470C149635348 @default.
- W4385999470 hasConceptScore W4385999470C159390177 @default.
- W4385999470 hasConceptScore W4385999470C159750122 @default.
- W4385999470 hasConceptScore W4385999470C18903297 @default.
- W4385999470 hasConceptScore W4385999470C2992136107 @default.