Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385999711> ?p ?o ?g. }
- W4385999711 abstract "Prediction of bacteremia is a clinically important but challenging task. An artificial intelligence (AI) model has the potential to facilitate early bacteremia prediction, aiding emergency department (ED) physicians in making timely decisions and reducing unnecessary medical costs. In this study, we developed and externally validated a Bayesian neural network-based AI bacteremia prediction model (AI-BPM). We also evaluated its impact on physician predictive performance considering both AI and physician uncertainties using historical patient data. A retrospective cohort of 15,362 adult patients with blood cultures performed in the ED was used to develop the AI-BPM. The AI-BPM used structured and unstructured text data acquired during the early stage of ED visit, and provided both the point estimate and 95% confidence interval (CI) of its predictions. High AI-BPM uncertainty was defined as when the predetermined bacteremia risk threshold (5%) was included in the 95% CI of the AI-BPM prediction, and low AI-BPM uncertainty was when it was not included. In the temporal validation dataset (N = 8,188), the AI-BPM achieved area under the receiver operating characteristic curve (AUC) of 0.754 (95% CI 0.737-0.771), sensitivity of 0.917 (95% CI 0.897-0.934), and specificity of 0.340 (95% CI 0.330-0.351). In the external validation dataset (N = 7,029), the AI-BPM's AUC was 0.738 (95% CI 0.722-0.755), sensitivity was 0.927 (95% CI 0.909-0.942), and specificity was 0.319 (95% CI 0.307-0.330). The AUC of the post-AI physicians predictions (0.703, 95% CI 0.654-0.753) was significantly improved compared with that of the pre-AI predictions (0.639, 95% CI 0.585-0.693; p-value < 0.001) in the sampled dataset (N = 1,000). The AI-BPM especially improved the predictive performance of physicians in cases with high physician uncertainty (low subjective confidence) and low AI-BPM uncertainty. Our results suggest that the uncertainty of both the AI model and physicians should be considered for successful AI model implementation." @default.
- W4385999711 created "2023-08-20" @default.
- W4385999711 creator A5017074883 @default.
- W4385999711 creator A5028737851 @default.
- W4385999711 creator A5031810296 @default.
- W4385999711 creator A5045330531 @default.
- W4385999711 creator A5060805888 @default.
- W4385999711 creator A5074993926 @default.
- W4385999711 date "2023-08-19" @default.
- W4385999711 modified "2023-10-12" @default.
- W4385999711 title "Development of an artificial intelligence bacteremia prediction model and evaluation of its impact on physician predictions focusing on uncertainty" @default.
- W4385999711 cites W1602388384 @default.
- W4385999711 cites W1904484517 @default.
- W4385999711 cites W1966976587 @default.
- W4385999711 cites W1993138512 @default.
- W4385999711 cites W2045554152 @default.
- W4385999711 cites W2105578014 @default.
- W4385999711 cites W2151785814 @default.
- W4385999711 cites W2322669802 @default.
- W4385999711 cites W2328176404 @default.
- W4385999711 cites W2605873810 @default.
- W4385999711 cites W2758245304 @default.
- W4385999711 cites W2772121968 @default.
- W4385999711 cites W2788948370 @default.
- W4385999711 cites W2792679887 @default.
- W4385999711 cites W2795938835 @default.
- W4385999711 cites W2805372352 @default.
- W4385999711 cites W2888347379 @default.
- W4385999711 cites W2894319790 @default.
- W4385999711 cites W2915446530 @default.
- W4385999711 cites W2924005961 @default.
- W4385999711 cites W2976398475 @default.
- W4385999711 cites W2978728857 @default.
- W4385999711 cites W2984645840 @default.
- W4385999711 cites W2999376772 @default.
- W4385999711 cites W3000574586 @default.
- W4385999711 cites W3012406014 @default.
- W4385999711 cites W3036458852 @default.
- W4385999711 cites W3042569426 @default.
- W4385999711 cites W3118929067 @default.
- W4385999711 cites W3124926562 @default.
- W4385999711 cites W3134722266 @default.
- W4385999711 cites W3195348523 @default.
- W4385999711 cites W3214997480 @default.
- W4385999711 cites W4205164650 @default.
- W4385999711 cites W4206328199 @default.
- W4385999711 cites W4206491499 @default.
- W4385999711 cites W4225493996 @default.
- W4385999711 cites W4280572991 @default.
- W4385999711 cites W4294214983 @default.
- W4385999711 cites W4307583084 @default.
- W4385999711 cites W4308149258 @default.
- W4385999711 cites W4312226936 @default.
- W4385999711 cites W4324140870 @default.
- W4385999711 doi "https://doi.org/10.1038/s41598-023-40708-2" @default.
- W4385999711 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37598221" @default.
- W4385999711 hasPublicationYear "2023" @default.
- W4385999711 type Work @default.
- W4385999711 citedByCount "0" @default.
- W4385999711 crossrefType "journal-article" @default.
- W4385999711 hasAuthorship W4385999711A5017074883 @default.
- W4385999711 hasAuthorship W4385999711A5028737851 @default.
- W4385999711 hasAuthorship W4385999711A5031810296 @default.
- W4385999711 hasAuthorship W4385999711A5045330531 @default.
- W4385999711 hasAuthorship W4385999711A5060805888 @default.
- W4385999711 hasAuthorship W4385999711A5074993926 @default.
- W4385999711 hasBestOaLocation W43859997111 @default.
- W4385999711 hasConcept C118552586 @default.
- W4385999711 hasConcept C119857082 @default.
- W4385999711 hasConcept C126322002 @default.
- W4385999711 hasConcept C154945302 @default.
- W4385999711 hasConcept C167135981 @default.
- W4385999711 hasConcept C194828623 @default.
- W4385999711 hasConcept C2779443120 @default.
- W4385999711 hasConcept C2780724011 @default.
- W4385999711 hasConcept C41008148 @default.
- W4385999711 hasConcept C44249647 @default.
- W4385999711 hasConcept C501593827 @default.
- W4385999711 hasConcept C58471807 @default.
- W4385999711 hasConcept C71924100 @default.
- W4385999711 hasConcept C86803240 @default.
- W4385999711 hasConcept C89423630 @default.
- W4385999711 hasConceptScore W4385999711C118552586 @default.
- W4385999711 hasConceptScore W4385999711C119857082 @default.
- W4385999711 hasConceptScore W4385999711C126322002 @default.
- W4385999711 hasConceptScore W4385999711C154945302 @default.
- W4385999711 hasConceptScore W4385999711C167135981 @default.
- W4385999711 hasConceptScore W4385999711C194828623 @default.
- W4385999711 hasConceptScore W4385999711C2779443120 @default.
- W4385999711 hasConceptScore W4385999711C2780724011 @default.
- W4385999711 hasConceptScore W4385999711C41008148 @default.
- W4385999711 hasConceptScore W4385999711C44249647 @default.
- W4385999711 hasConceptScore W4385999711C501593827 @default.
- W4385999711 hasConceptScore W4385999711C58471807 @default.
- W4385999711 hasConceptScore W4385999711C71924100 @default.
- W4385999711 hasConceptScore W4385999711C86803240 @default.
- W4385999711 hasConceptScore W4385999711C89423630 @default.
- W4385999711 hasFunder F4320322107 @default.
- W4385999711 hasIssue "1" @default.
- W4385999711 hasLocation W43859997111 @default.