Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386001502> ?p ?o ?g. }
- W4386001502 abstract "Abstract Human Papilloma Virus (HPV)-associated oropharyngeal squamous cell cancer (OPSCC) represents an OPSCC subgroup with an overall good prognosis with a rising incidence in Western countries. Multiple lines of evidence suggest that HPV-associated tumors are not a homogeneous tumor entity, underlining the need for accurate prognostic biomarkers. In this retrospective, multi-institutional study involving 906 patients from four centers and one database, we developed a deep learning algorithm (OPSCCnet), to analyze standard H&E stains for the calculation of a patient-level score associated with prognosis, comparing it to combined HPV-DNA and p16-status. When comparing OPSCCnet to HPV-status, the algorithm showed a good overall performance with a mean area under the receiver operator curve (AUROC) = 0.83 (95% CI = 0.77-0.9) for the test cohort ( n = 639), which could be increased to AUROC = 0.88 by filtering cases using a fixed threshold on the variance of the probability of the HPV-positive class - a potential surrogate marker of HPV-heterogeneity. OPSCCnet could be used as a screening tool, outperforming gold standard HPV testing (OPSCCnet: five-year survival rate: 96% [95% CI = 90–100%]; HPV testing: five-year survival rate: 80% [95% CI = 71–90%]). This could be confirmed using a multivariate analysis of a three-tier threshold (OPSCCnet: high HR = 0.15 [95% CI = 0.05–0.44], intermediate HR = 0.58 [95% CI = 0.34–0.98] p = 0.043, Cox proportional hazards model, n = 211; HPV testing: HR = 0.29 [95% CI = 0.15–0.54] p < 0.001, Cox proportional hazards model, n = 211). Collectively, our findings indicate that by analyzing standard gigapixel hematoxylin and eosin (H&E) histological whole-slide images, OPSCCnet demonstrated superior performance over p16/HPV-DNA testing in various clinical scenarios, particularly in accurately stratifying these patients." @default.
- W4386001502 created "2023-08-20" @default.
- W4386001502 creator A5002639412 @default.
- W4386001502 creator A5005911642 @default.
- W4386001502 creator A5006934246 @default.
- W4386001502 creator A5011775561 @default.
- W4386001502 creator A5011892614 @default.
- W4386001502 creator A5021962736 @default.
- W4386001502 creator A5030035319 @default.
- W4386001502 creator A5031525169 @default.
- W4386001502 creator A5039679399 @default.
- W4386001502 creator A5045047262 @default.
- W4386001502 creator A5045953059 @default.
- W4386001502 creator A5052062410 @default.
- W4386001502 creator A5057107182 @default.
- W4386001502 creator A5059433720 @default.
- W4386001502 creator A5062655554 @default.
- W4386001502 creator A5066376775 @default.
- W4386001502 creator A5067129030 @default.
- W4386001502 creator A5073184053 @default.
- W4386001502 creator A5073894935 @default.
- W4386001502 creator A5078832851 @default.
- W4386001502 creator A5079843787 @default.
- W4386001502 creator A5084228345 @default.
- W4386001502 creator A5087618277 @default.
- W4386001502 creator A5092665429 @default.
- W4386001502 date "2023-08-19" @default.
- W4386001502 modified "2023-10-12" @default.
- W4386001502 title "Predicting HPV association using deep learning and regular H&E stains allows granular stratification of oropharyngeal cancer patients" @default.
- W4386001502 cites W1516391511 @default.
- W4386001502 cites W1963487632 @default.
- W4386001502 cites W2041246059 @default.
- W4386001502 cites W2089585500 @default.
- W4386001502 cites W2090329647 @default.
- W4386001502 cites W2108598243 @default.
- W4386001502 cites W2129112648 @default.
- W4386001502 cites W2132162500 @default.
- W4386001502 cites W2150654835 @default.
- W4386001502 cites W2341237880 @default.
- W4386001502 cites W2343160907 @default.
- W4386001502 cites W2610548600 @default.
- W4386001502 cites W2901263658 @default.
- W4386001502 cites W2909457564 @default.
- W4386001502 cites W2925261789 @default.
- W4386001502 cites W2939957413 @default.
- W4386001502 cites W2952481429 @default.
- W4386001502 cites W2956228567 @default.
- W4386001502 cites W3039841751 @default.
- W4386001502 cites W3109688119 @default.
- W4386001502 cites W3134629567 @default.
- W4386001502 cites W3134877320 @default.
- W4386001502 cites W3165750456 @default.
- W4386001502 cites W3170178494 @default.
- W4386001502 cites W3189653046 @default.
- W4386001502 cites W3214980387 @default.
- W4386001502 cites W4210575080 @default.
- W4386001502 cites W4212896419 @default.
- W4386001502 cites W4214558579 @default.
- W4386001502 cites W4221011015 @default.
- W4386001502 cites W4225403164 @default.
- W4386001502 cites W4317436377 @default.
- W4386001502 cites W4320483165 @default.
- W4386001502 cites W4362523774 @default.
- W4386001502 doi "https://doi.org/10.1038/s41746-023-00901-z" @default.
- W4386001502 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37598255" @default.
- W4386001502 hasPublicationYear "2023" @default.
- W4386001502 type Work @default.
- W4386001502 citedByCount "0" @default.
- W4386001502 crossrefType "journal-article" @default.
- W4386001502 hasAuthorship W4386001502A5002639412 @default.
- W4386001502 hasAuthorship W4386001502A5005911642 @default.
- W4386001502 hasAuthorship W4386001502A5006934246 @default.
- W4386001502 hasAuthorship W4386001502A5011775561 @default.
- W4386001502 hasAuthorship W4386001502A5011892614 @default.
- W4386001502 hasAuthorship W4386001502A5021962736 @default.
- W4386001502 hasAuthorship W4386001502A5030035319 @default.
- W4386001502 hasAuthorship W4386001502A5031525169 @default.
- W4386001502 hasAuthorship W4386001502A5039679399 @default.
- W4386001502 hasAuthorship W4386001502A5045047262 @default.
- W4386001502 hasAuthorship W4386001502A5045953059 @default.
- W4386001502 hasAuthorship W4386001502A5052062410 @default.
- W4386001502 hasAuthorship W4386001502A5057107182 @default.
- W4386001502 hasAuthorship W4386001502A5059433720 @default.
- W4386001502 hasAuthorship W4386001502A5062655554 @default.
- W4386001502 hasAuthorship W4386001502A5066376775 @default.
- W4386001502 hasAuthorship W4386001502A5067129030 @default.
- W4386001502 hasAuthorship W4386001502A5073184053 @default.
- W4386001502 hasAuthorship W4386001502A5073894935 @default.
- W4386001502 hasAuthorship W4386001502A5078832851 @default.
- W4386001502 hasAuthorship W4386001502A5079843787 @default.
- W4386001502 hasAuthorship W4386001502A5084228345 @default.
- W4386001502 hasAuthorship W4386001502A5087618277 @default.
- W4386001502 hasAuthorship W4386001502A5092665429 @default.
- W4386001502 hasBestOaLocation W43860015021 @default.
- W4386001502 hasConcept C120665830 @default.
- W4386001502 hasConcept C121332964 @default.
- W4386001502 hasConcept C121608353 @default.
- W4386001502 hasConcept C126322002 @default.
- W4386001502 hasConcept C141341695 @default.
- W4386001502 hasConcept C143998085 @default.