Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386001503> ?p ?o ?g. }
- W4386001503 abstract "Data quality is a key factor in the development of trustworthy AI in healthcare. A large volume of curated datasets with controlled confounding factors can improve the accuracy, robustness, and privacy of downstream AI algorithms. However, access to high-quality datasets is limited by the technical difficulties of data acquisition, and large-scale sharing of healthcare data is hindered by strict ethical restrictions. Data synthesis algorithms, which generate data with distributions similar to real clinical data, can serve as a potential solution to address the scarcity of good quality data during the development of trustworthy AI. However, state-of-the-art data synthesis algorithms, especially deep learning algorithms, focus more on imaging data while neglecting the synthesis of non-imaging healthcare data, including clinical measurements, medical signals and waveforms, and electronic healthcare records (EHRs). Therefore, in this paper, we will review synthesis algorithms, particularly for non-imaging medical data, with the aim of providing trustworthy AI in this domain. This tutorial-style review paper will provide comprehensive descriptions of non-imaging medical data synthesis, covering aspects such as algorithms, evaluations, limitations, and future research directions." @default.
- W4386001503 created "2023-08-20" @default.
- W4386001503 creator A5011218928 @default.
- W4386001503 creator A5017326471 @default.
- W4386001503 creator A5032094235 @default.
- W4386001503 creator A5043070120 @default.
- W4386001503 creator A5047134326 @default.
- W4386001503 creator A5073429636 @default.
- W4386001503 creator A5075978383 @default.
- W4386001503 creator A5080398218 @default.
- W4386001503 date "2023-08-19" @default.
- W4386001503 modified "2023-10-07" @default.
- W4386001503 title "Non-Imaging Medical Data Synthesis for Trustworthy AI: A Comprehensive Survey" @default.
- W4386001503 cites W1604035549 @default.
- W4386001503 cites W1966534351 @default.
- W4386001503 cites W2015681982 @default.
- W4386001503 cites W2023095826 @default.
- W4386001503 cites W2033777218 @default.
- W4386001503 cites W2039436112 @default.
- W4386001503 cites W2071190900 @default.
- W4386001503 cites W2120411377 @default.
- W4386001503 cites W2148143831 @default.
- W4386001503 cites W2151233483 @default.
- W4386001503 cites W2152587002 @default.
- W4386001503 cites W2163873155 @default.
- W4386001503 cites W2170383904 @default.
- W4386001503 cites W2170736894 @default.
- W4386001503 cites W2485590855 @default.
- W4386001503 cites W2664267452 @default.
- W4386001503 cites W2734256217 @default.
- W4386001503 cites W2744999500 @default.
- W4386001503 cites W2751687090 @default.
- W4386001503 cites W2800788706 @default.
- W4386001503 cites W2899283552 @default.
- W4386001503 cites W2961396908 @default.
- W4386001503 cites W2964599656 @default.
- W4386001503 cites W3015471667 @default.
- W4386001503 cites W3090025689 @default.
- W4386001503 cites W3098325931 @default.
- W4386001503 cites W3110404953 @default.
- W4386001503 cites W3113905359 @default.
- W4386001503 cites W3120071807 @default.
- W4386001503 cites W3120644841 @default.
- W4386001503 cites W3166670496 @default.
- W4386001503 cites W3185543926 @default.
- W4386001503 cites W3204683753 @default.
- W4386001503 cites W3210107981 @default.
- W4386001503 cites W4205228770 @default.
- W4386001503 cites W4205561327 @default.
- W4386001503 cites W4206398356 @default.
- W4386001503 cites W4210385444 @default.
- W4386001503 cites W4213187648 @default.
- W4386001503 cites W4214519989 @default.
- W4386001503 cites W4220709328 @default.
- W4386001503 cites W4224022798 @default.
- W4386001503 cites W4234726042 @default.
- W4386001503 cites W4255375128 @default.
- W4386001503 cites W4292121845 @default.
- W4386001503 cites W4310917402 @default.
- W4386001503 cites W4313644512 @default.
- W4386001503 cites W4315435229 @default.
- W4386001503 cites W4322102006 @default.
- W4386001503 cites W4365143459 @default.
- W4386001503 doi "https://doi.org/10.1145/3614425" @default.
- W4386001503 hasPublicationYear "2023" @default.
- W4386001503 type Work @default.
- W4386001503 citedByCount "0" @default.
- W4386001503 crossrefType "journal-article" @default.
- W4386001503 hasAuthorship W4386001503A5011218928 @default.
- W4386001503 hasAuthorship W4386001503A5017326471 @default.
- W4386001503 hasAuthorship W4386001503A5032094235 @default.
- W4386001503 hasAuthorship W4386001503A5043070120 @default.
- W4386001503 hasAuthorship W4386001503A5047134326 @default.
- W4386001503 hasAuthorship W4386001503A5073429636 @default.
- W4386001503 hasAuthorship W4386001503A5075978383 @default.
- W4386001503 hasAuthorship W4386001503A5080398218 @default.
- W4386001503 hasBestOaLocation W43860015031 @default.
- W4386001503 hasConcept C104317684 @default.
- W4386001503 hasConcept C124101348 @default.
- W4386001503 hasConcept C142724271 @default.
- W4386001503 hasConcept C153701036 @default.
- W4386001503 hasConcept C154945302 @default.
- W4386001503 hasConcept C160735492 @default.
- W4386001503 hasConcept C162324750 @default.
- W4386001503 hasConcept C176217482 @default.
- W4386001503 hasConcept C185592680 @default.
- W4386001503 hasConcept C204787440 @default.
- W4386001503 hasConcept C21547014 @default.
- W4386001503 hasConcept C24756922 @default.
- W4386001503 hasConcept C2522767166 @default.
- W4386001503 hasConcept C26517878 @default.
- W4386001503 hasConcept C2779965156 @default.
- W4386001503 hasConcept C38652104 @default.
- W4386001503 hasConcept C41008148 @default.
- W4386001503 hasConcept C50522688 @default.
- W4386001503 hasConcept C55493867 @default.
- W4386001503 hasConcept C63479239 @default.
- W4386001503 hasConcept C71924100 @default.
- W4386001503 hasConceptScore W4386001503C104317684 @default.
- W4386001503 hasConceptScore W4386001503C124101348 @default.