Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386001917> ?p ?o ?g. }
- W4386001917 endingPage "3373" @default.
- W4386001917 startingPage "3357" @default.
- W4386001917 abstract "Abstract CNC machines have revolutionized manufacturing by enabling high-quality and high-productivity production. Monitoring the condition of these machines during production would reduce maintenance cost and avoid manufacturing defective parts. Misalignment of the linear tables in CNCs can directly affect the quality of the manufactured parts, and the components of the linear tables wear out over time due to the heavy and fluctuating loads. To address these challenges, an intelligent monitoring system was developed to identify normal operation and misalignments. Since damaging a CNC machine for data collection is too expensive, transfer learning was used in two steps. First, a specially designed experimental feed axis test platform (FATP) was used to sample the current signal at normal and five levels of left-side misalignment conditions ranging from 0.05 to 0.25 mm. Four different algorithm combinations were trained to detect misalignments. These combinations included a 1D convolution neural network (CNN) and autoencoder (AE) combination, a temporal convolutional network (TCN) and AE combination, a long short-term memory neural network (LSTM) and AE combination, and a CNN, LSTM, and AE combination. At the second step, Wasserstein deep convolutional generative adversarial network (W-DCGAN) was used to generate data by integrating the observed characteristics of the FATP at different misalignment levels and collected limited data from the actual CNC machines. To evaluate the similarity and limited diversity of generated and real signals, t-distributed stochastic neighbor embedding (T-SNE) method was used. The hyperparameters of the model were optimized by random and grid search. The CNN, LSTM, and AE combination demonstrated the best performance, which provides a practical way to detect misalignments without stopping production or cluttering the work area with sensors. The proposed intelligent monitoring system can detect misalignments of the linear tables of CNCs, thus enhancing the quality of manufactured parts and reducing production costs." @default.
- W4386001917 created "2023-08-20" @default.
- W4386001917 creator A5031064868 @default.
- W4386001917 creator A5054486464 @default.
- W4386001917 creator A5064027735 @default.
- W4386001917 creator A5065657263 @default.
- W4386001917 date "2023-08-19" @default.
- W4386001917 modified "2023-10-12" @default.
- W4386001917 title "Monitoring the misalignment of machine tools with autoencoders after they are trained with transfer learning data" @default.
- W4386001917 cites W1964060189 @default.
- W4386001917 cites W1993943803 @default.
- W4386001917 cites W2033768936 @default.
- W4386001917 cites W2064675550 @default.
- W4386001917 cites W2112796928 @default.
- W4386001917 cites W2480364715 @default.
- W4386001917 cites W2564938190 @default.
- W4386001917 cites W2595796352 @default.
- W4386001917 cites W2601590138 @default.
- W4386001917 cites W2603304445 @default.
- W4386001917 cites W2766736793 @default.
- W4386001917 cites W2767031373 @default.
- W4386001917 cites W2782657836 @default.
- W4386001917 cites W2796013264 @default.
- W4386001917 cites W2885785531 @default.
- W4386001917 cites W2887511588 @default.
- W4386001917 cites W2887782657 @default.
- W4386001917 cites W2942441318 @default.
- W4386001917 cites W2963532361 @default.
- W4386001917 cites W2981386789 @default.
- W4386001917 cites W2990122260 @default.
- W4386001917 cites W2995015263 @default.
- W4386001917 cites W2998222719 @default.
- W4386001917 cites W3004999940 @default.
- W4386001917 cites W3010192349 @default.
- W4386001917 cites W3019144150 @default.
- W4386001917 cites W3025981493 @default.
- W4386001917 cites W3037780542 @default.
- W4386001917 cites W3048247683 @default.
- W4386001917 cites W3082810877 @default.
- W4386001917 cites W3094346685 @default.
- W4386001917 cites W3096831136 @default.
- W4386001917 cites W3105816646 @default.
- W4386001917 cites W3186020689 @default.
- W4386001917 cites W4206553219 @default.
- W4386001917 cites W4220828107 @default.
- W4386001917 cites W4226047630 @default.
- W4386001917 cites W4226209181 @default.
- W4386001917 cites W4289995035 @default.
- W4386001917 cites W4295749827 @default.
- W4386001917 cites W4308889875 @default.
- W4386001917 cites W4323033013 @default.
- W4386001917 cites W4323338927 @default.
- W4386001917 cites W4365451933 @default.
- W4386001917 doi "https://doi.org/10.1007/s00170-023-12060-2" @default.
- W4386001917 hasPublicationYear "2023" @default.
- W4386001917 type Work @default.
- W4386001917 citedByCount "0" @default.
- W4386001917 crossrefType "journal-article" @default.
- W4386001917 hasAuthorship W4386001917A5031064868 @default.
- W4386001917 hasAuthorship W4386001917A5054486464 @default.
- W4386001917 hasAuthorship W4386001917A5064027735 @default.
- W4386001917 hasAuthorship W4386001917A5065657263 @default.
- W4386001917 hasBestOaLocation W43860019171 @default.
- W4386001917 hasConcept C101738243 @default.
- W4386001917 hasConcept C108583219 @default.
- W4386001917 hasConcept C119857082 @default.
- W4386001917 hasConcept C150899416 @default.
- W4386001917 hasConcept C153180895 @default.
- W4386001917 hasConcept C154945302 @default.
- W4386001917 hasConcept C41008148 @default.
- W4386001917 hasConcept C45347329 @default.
- W4386001917 hasConcept C50644808 @default.
- W4386001917 hasConcept C81363708 @default.
- W4386001917 hasConcept C8642999 @default.
- W4386001917 hasConceptScore W4386001917C101738243 @default.
- W4386001917 hasConceptScore W4386001917C108583219 @default.
- W4386001917 hasConceptScore W4386001917C119857082 @default.
- W4386001917 hasConceptScore W4386001917C150899416 @default.
- W4386001917 hasConceptScore W4386001917C153180895 @default.
- W4386001917 hasConceptScore W4386001917C154945302 @default.
- W4386001917 hasConceptScore W4386001917C41008148 @default.
- W4386001917 hasConceptScore W4386001917C45347329 @default.
- W4386001917 hasConceptScore W4386001917C50644808 @default.
- W4386001917 hasConceptScore W4386001917C81363708 @default.
- W4386001917 hasConceptScore W4386001917C8642999 @default.
- W4386001917 hasIssue "7-8" @default.
- W4386001917 hasLocation W43860019171 @default.
- W4386001917 hasLocation W43860019172 @default.
- W4386001917 hasOpenAccess W4386001917 @default.
- W4386001917 hasPrimaryLocation W43860019171 @default.
- W4386001917 hasRelatedWork W2964954556 @default.
- W4386001917 hasRelatedWork W3003905048 @default.
- W4386001917 hasRelatedWork W3135818718 @default.
- W4386001917 hasRelatedWork W3167935049 @default.
- W4386001917 hasRelatedWork W3176438653 @default.
- W4386001917 hasRelatedWork W3183901164 @default.
- W4386001917 hasRelatedWork W4206951940 @default.
- W4386001917 hasRelatedWork W4290188444 @default.