Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386002023> ?p ?o ?g. }
- W4386002023 abstract "The current prognostic tools for esophageal squamous cell carcinoma (ESCC) lack the necessary accuracy to facilitate individualized patient management strategies. To address this issue, this study was conducted to develop a machine learning (ML) prediction model for ESCC patients' survival management. Six ML approaches, including Rpart, Elastic Net, GBM, Random Forest, GLMboost, and the machine learning-extended CoxPH method, were employed to develop risk prediction models. The model was trained on a dataset of 1954 ESCC patients with 27 clinical features and validated on a dataset of 487 ESCC patients. The discriminative performance of the models was assessed using the concordance index (C-index). The best performing model was used for risk stratification and clinical evaluation. The study found that N stage, T stage, surgical margin, tumor grade, tumor length, sex, MPV, AST, FIB, and Mg are the important feature for ESCC patients' survival. The machine learning-extended CoxPH model, Elastic Net, and Random Forest had similar performance in predicting the mortality risk of ESCC patients, and outperformed GBM, GLMboost, and Rpart. The risk scores derived from the CoxPH model effectively stratified ESCC patients into low-, intermediate-, and high-risk groups with distinctly different 3-year overall survival (OS) probabilities of 80.8%, 58.2%, and 29.5%, respectively. This risk stratification was also observed in the validation cohort. Furthermore, the risk model demonstrated greater discriminative ability and net benefit than the AJCC8th stage, suggesting its potential as a prognostic tool for predicting survival events and guiding clinical decision-making. The classical algorithm of the CoxPH method was also found to be sufficiently good for interpretive studies." @default.
- W4386002023 created "2023-08-20" @default.
- W4386002023 creator A5005006218 @default.
- W4386002023 creator A5008381000 @default.
- W4386002023 creator A5014795319 @default.
- W4386002023 creator A5030871489 @default.
- W4386002023 creator A5034490033 @default.
- W4386002023 creator A5035600764 @default.
- W4386002023 creator A5060741107 @default.
- W4386002023 creator A5072781798 @default.
- W4386002023 date "2023-08-19" @default.
- W4386002023 modified "2023-10-10" @default.
- W4386002023 title "Machine learning‑based prediction of survival prognosis in esophageal squamous cell carcinoma" @default.
- W4386002023 cites W1892595029 @default.
- W4386002023 cites W2070493638 @default.
- W4386002023 cites W2088883866 @default.
- W4386002023 cites W2097360283 @default.
- W4386002023 cites W2509391842 @default.
- W4386002023 cites W2586306658 @default.
- W4386002023 cites W2593759473 @default.
- W4386002023 cites W2886081284 @default.
- W4386002023 cites W2889646458 @default.
- W4386002023 cites W2901691089 @default.
- W4386002023 cites W2943491685 @default.
- W4386002023 cites W2981940474 @default.
- W4386002023 cites W2982098076 @default.
- W4386002023 cites W2983538538 @default.
- W4386002023 cites W2996717911 @default.
- W4386002023 cites W2997890804 @default.
- W4386002023 cites W3023997891 @default.
- W4386002023 cites W3092106504 @default.
- W4386002023 cites W3100128679 @default.
- W4386002023 cites W3103070090 @default.
- W4386002023 cites W3107095885 @default.
- W4386002023 cites W3118632980 @default.
- W4386002023 cites W3123032892 @default.
- W4386002023 cites W3125706895 @default.
- W4386002023 cites W3129888387 @default.
- W4386002023 cites W3138337859 @default.
- W4386002023 cites W3144747894 @default.
- W4386002023 cites W3149022359 @default.
- W4386002023 cites W3156989699 @default.
- W4386002023 cites W3172361539 @default.
- W4386002023 cites W3181637650 @default.
- W4386002023 cites W3185255104 @default.
- W4386002023 cites W3191189635 @default.
- W4386002023 cites W4280500792 @default.
- W4386002023 cites W4294541781 @default.
- W4386002023 cites W4297957988 @default.
- W4386002023 cites W4311619441 @default.
- W4386002023 doi "https://doi.org/10.1038/s41598-023-40780-8" @default.
- W4386002023 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37598277" @default.
- W4386002023 hasPublicationYear "2023" @default.
- W4386002023 type Work @default.
- W4386002023 citedByCount "0" @default.
- W4386002023 crossrefType "journal-article" @default.
- W4386002023 hasAuthorship W4386002023A5005006218 @default.
- W4386002023 hasAuthorship W4386002023A5008381000 @default.
- W4386002023 hasAuthorship W4386002023A5014795319 @default.
- W4386002023 hasAuthorship W4386002023A5030871489 @default.
- W4386002023 hasAuthorship W4386002023A5034490033 @default.
- W4386002023 hasAuthorship W4386002023A5035600764 @default.
- W4386002023 hasAuthorship W4386002023A5060741107 @default.
- W4386002023 hasAuthorship W4386002023A5072781798 @default.
- W4386002023 hasBestOaLocation W43860020231 @default.
- W4386002023 hasConcept C11783203 @default.
- W4386002023 hasConcept C119857082 @default.
- W4386002023 hasConcept C126322002 @default.
- W4386002023 hasConcept C143998085 @default.
- W4386002023 hasConcept C146357865 @default.
- W4386002023 hasConcept C148483581 @default.
- W4386002023 hasConcept C151730666 @default.
- W4386002023 hasConcept C154945302 @default.
- W4386002023 hasConcept C160798450 @default.
- W4386002023 hasConcept C169258074 @default.
- W4386002023 hasConcept C203868755 @default.
- W4386002023 hasConcept C2777546739 @default.
- W4386002023 hasConcept C2779134260 @default.
- W4386002023 hasConcept C2780091936 @default.
- W4386002023 hasConcept C2994415158 @default.
- W4386002023 hasConcept C3019894029 @default.
- W4386002023 hasConcept C3020404979 @default.
- W4386002023 hasConcept C41008148 @default.
- W4386002023 hasConcept C71924100 @default.
- W4386002023 hasConcept C72563966 @default.
- W4386002023 hasConcept C84525736 @default.
- W4386002023 hasConcept C86803240 @default.
- W4386002023 hasConcept C97931131 @default.
- W4386002023 hasConceptScore W4386002023C11783203 @default.
- W4386002023 hasConceptScore W4386002023C119857082 @default.
- W4386002023 hasConceptScore W4386002023C126322002 @default.
- W4386002023 hasConceptScore W4386002023C143998085 @default.
- W4386002023 hasConceptScore W4386002023C146357865 @default.
- W4386002023 hasConceptScore W4386002023C148483581 @default.
- W4386002023 hasConceptScore W4386002023C151730666 @default.
- W4386002023 hasConceptScore W4386002023C154945302 @default.
- W4386002023 hasConceptScore W4386002023C160798450 @default.
- W4386002023 hasConceptScore W4386002023C169258074 @default.
- W4386002023 hasConceptScore W4386002023C203868755 @default.
- W4386002023 hasConceptScore W4386002023C2777546739 @default.