Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386002420> ?p ?o ?g. }
- W4386002420 endingPage "119541" @default.
- W4386002420 startingPage "119541" @default.
- W4386002420 abstract "Least squares regression (LSR) has demonstrated promising performance in various classification tasks owing to its effectiveness and efficiency. However, there are some deficiencies that seriously hinder its application in imbalanced data scenarios. The first is that LSR strongly relies on a balanced class distribution. A severely imbalanced class distribution may seriously damage the effectiveness of the algorithm. Second, the utilized binary label matrix in the conventional LSR model may be too strict to learn a discriminative transformation matrix for imbalanced learning. To address the above issues, in this paper, an adaptive weight learning mechanism and label relaxation constraint are proposed and incorporated into the framework of LSR to tackle the imbalanced classification problem. The weight of each sample can be adaptively obtained according to the original distribution information of the imbalanced data, in which the importance of minority class samples can be better reflected with larger weights. A new label relaxation matrix consisting of the original label matrix and auxiliary matrix is constructed to widen the margins between different classes. Further, we provide an iterative algorithm with fast convergence to solve the resulting optimization problem. Extensive experimental results on diverse binary-class and multi-class imbalanced datasets show that the proposed method outperforms many other state-of-the-art imbalanced learning approaches." @default.
- W4386002420 created "2023-08-20" @default.
- W4386002420 creator A5021606767 @default.
- W4386002420 creator A5030658802 @default.
- W4386002420 creator A5037378054 @default.
- W4386002420 creator A5042020913 @default.
- W4386002420 creator A5066621776 @default.
- W4386002420 creator A5075136696 @default.
- W4386002420 creator A5075356494 @default.
- W4386002420 date "2023-11-01" @default.
- W4386002420 modified "2023-10-12" @default.
- W4386002420 title "Imbalanced least squares regression with adaptive weight learning" @default.
- W4386002420 cites W1984323748 @default.
- W4386002420 cites W1993220166 @default.
- W4386002420 cites W2004427069 @default.
- W4386002420 cites W2043080228 @default.
- W4386002420 cites W2078622091 @default.
- W4386002420 cites W2087240369 @default.
- W4386002420 cites W2087787741 @default.
- W4386002420 cites W2104167780 @default.
- W4386002420 cites W2129812935 @default.
- W4386002420 cites W2148143831 @default.
- W4386002420 cites W2581571072 @default.
- W4386002420 cites W2596340169 @default.
- W4386002420 cites W2603231868 @default.
- W4386002420 cites W2763619424 @default.
- W4386002420 cites W2794208501 @default.
- W4386002420 cites W2807832475 @default.
- W4386002420 cites W2896726808 @default.
- W4386002420 cites W2905631612 @default.
- W4386002420 cites W2907110086 @default.
- W4386002420 cites W2914813387 @default.
- W4386002420 cites W2943045886 @default.
- W4386002420 cites W2953961724 @default.
- W4386002420 cites W2963566126 @default.
- W4386002420 cites W2963596856 @default.
- W4386002420 cites W2964050365 @default.
- W4386002420 cites W3094373624 @default.
- W4386002420 cites W3126119469 @default.
- W4386002420 cites W3127368173 @default.
- W4386002420 cites W3133808320 @default.
- W4386002420 cites W3168561494 @default.
- W4386002420 cites W3171477298 @default.
- W4386002420 cites W4295530411 @default.
- W4386002420 cites W4316036271 @default.
- W4386002420 cites W4319075633 @default.
- W4386002420 cites W4366490413 @default.
- W4386002420 cites W4376868835 @default.
- W4386002420 doi "https://doi.org/10.1016/j.ins.2023.119541" @default.
- W4386002420 hasPublicationYear "2023" @default.
- W4386002420 type Work @default.
- W4386002420 citedByCount "0" @default.
- W4386002420 crossrefType "journal-article" @default.
- W4386002420 hasAuthorship W4386002420A5021606767 @default.
- W4386002420 hasAuthorship W4386002420A5030658802 @default.
- W4386002420 hasAuthorship W4386002420A5037378054 @default.
- W4386002420 hasAuthorship W4386002420A5042020913 @default.
- W4386002420 hasAuthorship W4386002420A5066621776 @default.
- W4386002420 hasAuthorship W4386002420A5075136696 @default.
- W4386002420 hasAuthorship W4386002420A5075356494 @default.
- W4386002420 hasConcept C106487976 @default.
- W4386002420 hasConcept C119857082 @default.
- W4386002420 hasConcept C121332964 @default.
- W4386002420 hasConcept C126255220 @default.
- W4386002420 hasConcept C153180895 @default.
- W4386002420 hasConcept C154945302 @default.
- W4386002420 hasConcept C15744967 @default.
- W4386002420 hasConcept C159985019 @default.
- W4386002420 hasConcept C162324750 @default.
- W4386002420 hasConcept C165443888 @default.
- W4386002420 hasConcept C192562407 @default.
- W4386002420 hasConcept C2524010 @default.
- W4386002420 hasConcept C2776029896 @default.
- W4386002420 hasConcept C2776036281 @default.
- W4386002420 hasConcept C2777212361 @default.
- W4386002420 hasConcept C2777303404 @default.
- W4386002420 hasConcept C33923547 @default.
- W4386002420 hasConcept C39920418 @default.
- W4386002420 hasConcept C41008148 @default.
- W4386002420 hasConcept C48372109 @default.
- W4386002420 hasConcept C50522688 @default.
- W4386002420 hasConcept C74650414 @default.
- W4386002420 hasConcept C77805123 @default.
- W4386002420 hasConcept C94375191 @default.
- W4386002420 hasConcept C97931131 @default.
- W4386002420 hasConceptScore W4386002420C106487976 @default.
- W4386002420 hasConceptScore W4386002420C119857082 @default.
- W4386002420 hasConceptScore W4386002420C121332964 @default.
- W4386002420 hasConceptScore W4386002420C126255220 @default.
- W4386002420 hasConceptScore W4386002420C153180895 @default.
- W4386002420 hasConceptScore W4386002420C154945302 @default.
- W4386002420 hasConceptScore W4386002420C15744967 @default.
- W4386002420 hasConceptScore W4386002420C159985019 @default.
- W4386002420 hasConceptScore W4386002420C162324750 @default.
- W4386002420 hasConceptScore W4386002420C165443888 @default.
- W4386002420 hasConceptScore W4386002420C192562407 @default.
- W4386002420 hasConceptScore W4386002420C2524010 @default.
- W4386002420 hasConceptScore W4386002420C2776029896 @default.