Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386002435> ?p ?o ?g. }
- W4386002435 endingPage "110368" @default.
- W4386002435 startingPage "110368" @default.
- W4386002435 abstract "Aspergillus flavus infection and subsequent aflatoxin contamination are considered the major constraints in senna (Cassia angustifolia Vahl.) export. Using native epiphytic yeast to control phytopathogens is a successful strategy for managing plant diseases. In the present investigation, we exploited the antagonistic potential of epiphytic yeast isolates obtained from senna against A. flavus growth and aflatoxin B1 (AFB1) production. Four Kluyveromyces marxianus strains (YSL3, YSL16, YSP12, and YSF9) exhibited vigorous antagonistic activity with a maximum inhibition of 64 %. In vivo evaluation of senna pods showed that K. marxianus strains effectively reduced A. flavus colonization with a population range of 5.87 to 7.08 log10 CFU/g. In contrast, the untreated senna pods were found to have severe fungal colonization with a population of 7.84 log10 CFU/g. In addition, HPLC analysis showed that aflatoxin B1 in senna pods was drastically reduced upon yeast treatment up to 14 DAI. Furthermore, we demonstrated the antifungal action mechanisms of K. marxianus, such as surface colonizing ability on pods, production of antifungal volatiles (VOCs), siderophores, extracellular lytic enzymes, and cell wall binding ability to AFB1. All four strains of K. marxianus showed rapid colonization on the senna pod, and YSP12 reached the maximum population of 7.18 log10 CFU/pod at 9 days after inoculation (DAI). The exposure of A. flavus to K. marxianus VOCs significantly reduced the growth by up to 99 and 93.2 % at 7 and 14 DAI, respectively. Scanning electron microscopic images demonstrated severe mycelial damage and hyphal deformities of A. flavus. In addition, yeast VOCs can reduce aflatoxin biosynthesis in A. flavus by up to 99 and 93.2 % at 7 and 14 DAI, respectively. Gas chromatography-mass spectrometry analysis confirmed the presence of antimicrobial compounds such as dimethyl trisulfide, ethyl acetate, ethanol, 3-methyl butanal, 2-methyl-1-butanol, and 3-methyl-1-butanol in the volatiles. K. marxianus strains produced siderophores and hydrolytic enzymes such as chitinase and β-1,3-glucanase. A higher AFB1 binding ability was observed in the heat-killed cells (47.5 to 70.65 %) than in the viable cells (43.16 to 60.98 %) of K. marxianus. The current study demonstrated that epiphytic K. marxianus isolated from senna could be a successful biocontrol source to reduce aflatoxin contamination in senna pods." @default.
- W4386002435 created "2023-08-20" @default.
- W4386002435 creator A5015118540 @default.
- W4386002435 creator A5021395523 @default.
- W4386002435 creator A5079267903 @default.
- W4386002435 date "2023-12-01" @default.
- W4386002435 modified "2023-10-12" @default.
- W4386002435 title "Inhibitory effects of epiphytic Kluyveromyces marxianus from Indian senna (Cassia angustifolia Vahl.) on growth and aflatoxin production of Aspergillus flavus" @default.
- W4386002435 cites W104671088 @default.
- W4386002435 cites W1515318730 @default.
- W4386002435 cites W1931763714 @default.
- W4386002435 cites W1974105595 @default.
- W4386002435 cites W1975664679 @default.
- W4386002435 cites W1976968489 @default.
- W4386002435 cites W1981311147 @default.
- W4386002435 cites W1982669933 @default.
- W4386002435 cites W1983084772 @default.
- W4386002435 cites W1987910760 @default.
- W4386002435 cites W1988780738 @default.
- W4386002435 cites W1991907044 @default.
- W4386002435 cites W1993048786 @default.
- W4386002435 cites W1995979343 @default.
- W4386002435 cites W2005293791 @default.
- W4386002435 cites W2036621480 @default.
- W4386002435 cites W2041232781 @default.
- W4386002435 cites W2047810781 @default.
- W4386002435 cites W2051133050 @default.
- W4386002435 cites W2051153849 @default.
- W4386002435 cites W2058307045 @default.
- W4386002435 cites W2069389581 @default.
- W4386002435 cites W2086533771 @default.
- W4386002435 cites W2093931270 @default.
- W4386002435 cites W2095315641 @default.
- W4386002435 cites W2113170687 @default.
- W4386002435 cites W2118034895 @default.
- W4386002435 cites W2118321982 @default.
- W4386002435 cites W2171611283 @default.
- W4386002435 cites W2174174982 @default.
- W4386002435 cites W2190891362 @default.
- W4386002435 cites W2504963346 @default.
- W4386002435 cites W2510963722 @default.
- W4386002435 cites W2520786492 @default.
- W4386002435 cites W2557184571 @default.
- W4386002435 cites W2558428302 @default.
- W4386002435 cites W2571697541 @default.
- W4386002435 cites W2604780679 @default.
- W4386002435 cites W2615470422 @default.
- W4386002435 cites W2615610124 @default.
- W4386002435 cites W2758571492 @default.
- W4386002435 cites W27790539 @default.
- W4386002435 cites W2790733252 @default.
- W4386002435 cites W2801693004 @default.
- W4386002435 cites W2810483080 @default.
- W4386002435 cites W2811189719 @default.
- W4386002435 cites W2899177198 @default.
- W4386002435 cites W2920024070 @default.
- W4386002435 cites W2923195903 @default.
- W4386002435 cites W2944068995 @default.
- W4386002435 cites W2947731327 @default.
- W4386002435 cites W2952540381 @default.
- W4386002435 cites W2962873827 @default.
- W4386002435 cites W2978213080 @default.
- W4386002435 cites W2980046651 @default.
- W4386002435 cites W2989611384 @default.
- W4386002435 cites W2990918945 @default.
- W4386002435 cites W3004396758 @default.
- W4386002435 cites W3004646784 @default.
- W4386002435 cites W3021930485 @default.
- W4386002435 cites W3042076189 @default.
- W4386002435 cites W3084171243 @default.
- W4386002435 cites W3111538063 @default.
- W4386002435 cites W3132120342 @default.
- W4386002435 cites W3132816166 @default.
- W4386002435 cites W3175497877 @default.
- W4386002435 cites W3205870269 @default.
- W4386002435 cites W3211164482 @default.
- W4386002435 cites W3216928268 @default.
- W4386002435 cites W4288760583 @default.
- W4386002435 cites W4297250069 @default.
- W4386002435 doi "https://doi.org/10.1016/j.ijfoodmicro.2023.110368" @default.
- W4386002435 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37639733" @default.
- W4386002435 hasPublicationYear "2023" @default.
- W4386002435 type Work @default.
- W4386002435 citedByCount "0" @default.
- W4386002435 crossrefType "journal-article" @default.
- W4386002435 hasAuthorship W4386002435A5015118540 @default.
- W4386002435 hasAuthorship W4386002435A5021395523 @default.
- W4386002435 hasAuthorship W4386002435A5079267903 @default.
- W4386002435 hasConcept C144024400 @default.
- W4386002435 hasConcept C149923435 @default.
- W4386002435 hasConcept C2776917750 @default.
- W4386002435 hasConcept C2777292910 @default.
- W4386002435 hasConcept C2777576037 @default.
- W4386002435 hasConcept C2779222958 @default.
- W4386002435 hasConcept C2908647359 @default.
- W4386002435 hasConcept C31903555 @default.
- W4386002435 hasConcept C40758303 @default.
- W4386002435 hasConcept C55493867 @default.