Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386002539> ?p ?o ?g. }
- W4386002539 endingPage "100681" @default.
- W4386002539 startingPage "100681" @default.
- W4386002539 abstract "This study explores the suitability of activity counts extracted from social media platforms (Twitter, Flickr), review portals (TripAdvisor, Google Maps) and Wikipedia article views to model official visitor counts at selected outdoor attractions in Florida (U.S.) and Carinthia (Austria). It applies correlation analysis, multiple regression, and time series analysis to identify which of these user-generated content (UGC) sources and their combinations best match official monthly visitor count patterns for an analysis period of three years (2019–2021). With travel activities being severely hampered during 2020 due to the COVID-19 pandemic, the analysis also aims to analyze to which extent reduced visitor counts are reflected in the respective UGC sources. Results show that the number of Google Maps reviews combined with Wikipedia pageviews best explain the variability of monthly official visitor counts in Ordinary Least Squares (OLS) regression in both study areas. While the comparison analysis was conducted for monthly counts, data from some UGC sources can reflect shorter term activity fluctuations. Time series analysis detected a seasonality of 12 months for Wikipedia pageviews, Google Maps reviews, and official visitor counts for Austria due a clearly distinct summer season. As opposed to this, for Florida, due to a climate that facilitates all-year round park visitations, periodograms yielded different seasonality frequencies for UGC sources and official visitor counts. A short-term drop in visitor counts due to COVID-19 was evident in Florida both in UGC sources and official visitor counts in spring 2020, whereas for Austria attractions reduced activity is only somewhat reflected in UGC sources but not in actual visitor counts due to attractions still being closed in April. This research explores multiple UGC sources for modeling official visitor counts at outdoor attractions. A combination of several sources has the advantage that it can help mitigate known limitations of UGC from individual sources, such as sparsity of geodata, data retrieval restrictions, sociodemographic bias, and varying popularity across regions. This research also revealed a better model fit of combined UGC data with official visitor counts than using any of the UGC sources alone. Data-rich UGC sources offer daily or weekly activity counts that provide a more refined temporal resolution than typical official visitor counts which are often limited to monthly data aggregations." @default.
- W4386002539 created "2023-08-20" @default.
- W4386002539 creator A5062667914 @default.
- W4386002539 creator A5081480397 @default.
- W4386002539 creator A5090276031 @default.
- W4386002539 date "2023-08-01" @default.
- W4386002539 modified "2023-10-12" @default.
- W4386002539 title "Use of social media data, online reviews and wikipedia page views to measure visitation patterns of outdoor attractions" @default.
- W4386002539 cites W112288907 @default.
- W4386002539 cites W1968545881 @default.
- W4386002539 cites W2002576419 @default.
- W4386002539 cites W2006480939 @default.
- W4386002539 cites W2021504710 @default.
- W4386002539 cites W2038244753 @default.
- W4386002539 cites W2084296691 @default.
- W4386002539 cites W2092872567 @default.
- W4386002539 cites W2112150227 @default.
- W4386002539 cites W2140853482 @default.
- W4386002539 cites W2476338024 @default.
- W4386002539 cites W2520722752 @default.
- W4386002539 cites W2526724998 @default.
- W4386002539 cites W2539161094 @default.
- W4386002539 cites W2566919502 @default.
- W4386002539 cites W2568619829 @default.
- W4386002539 cites W2574023341 @default.
- W4386002539 cites W2585917622 @default.
- W4386002539 cites W2596589504 @default.
- W4386002539 cites W2734476548 @default.
- W4386002539 cites W2755601821 @default.
- W4386002539 cites W2774804416 @default.
- W4386002539 cites W2774860546 @default.
- W4386002539 cites W2782176193 @default.
- W4386002539 cites W2793531482 @default.
- W4386002539 cites W2794192317 @default.
- W4386002539 cites W2798990976 @default.
- W4386002539 cites W2800099338 @default.
- W4386002539 cites W2802732461 @default.
- W4386002539 cites W2885312348 @default.
- W4386002539 cites W2890992808 @default.
- W4386002539 cites W2900628301 @default.
- W4386002539 cites W2907352650 @default.
- W4386002539 cites W2912534287 @default.
- W4386002539 cites W2912544980 @default.
- W4386002539 cites W2916371276 @default.
- W4386002539 cites W2937006337 @default.
- W4386002539 cites W2939264787 @default.
- W4386002539 cites W2951058877 @default.
- W4386002539 cites W2962034790 @default.
- W4386002539 cites W3004140177 @default.
- W4386002539 cites W3015747994 @default.
- W4386002539 cites W3016084181 @default.
- W4386002539 cites W3017855717 @default.
- W4386002539 cites W3019320019 @default.
- W4386002539 cites W3022203320 @default.
- W4386002539 cites W3022841838 @default.
- W4386002539 cites W3043681739 @default.
- W4386002539 cites W3044032046 @default.
- W4386002539 cites W3082568005 @default.
- W4386002539 cites W3087716147 @default.
- W4386002539 cites W3088034826 @default.
- W4386002539 cites W3102725001 @default.
- W4386002539 cites W3103616114 @default.
- W4386002539 cites W3105667161 @default.
- W4386002539 cites W3111393656 @default.
- W4386002539 cites W3123739680 @default.
- W4386002539 cites W3129384303 @default.
- W4386002539 cites W3130334335 @default.
- W4386002539 cites W3131669671 @default.
- W4386002539 cites W3164683031 @default.
- W4386002539 cites W3172396888 @default.
- W4386002539 cites W3174959106 @default.
- W4386002539 cites W3177057763 @default.
- W4386002539 cites W3193600012 @default.
- W4386002539 cites W3199324434 @default.
- W4386002539 cites W4213349392 @default.
- W4386002539 cites W4220734222 @default.
- W4386002539 cites W4281387123 @default.
- W4386002539 cites W4294792881 @default.
- W4386002539 cites W4297991532 @default.
- W4386002539 cites W4310065938 @default.
- W4386002539 doi "https://doi.org/10.1016/j.jort.2023.100681" @default.
- W4386002539 hasPublicationYear "2023" @default.
- W4386002539 type Work @default.
- W4386002539 citedByCount "0" @default.
- W4386002539 crossrefType "journal-article" @default.
- W4386002539 hasAuthorship W4386002539A5062667914 @default.
- W4386002539 hasAuthorship W4386002539A5081480397 @default.
- W4386002539 hasAuthorship W4386002539A5090276031 @default.
- W4386002539 hasBestOaLocation W43860025391 @default.
- W4386002539 hasConcept C105795698 @default.
- W4386002539 hasConcept C110269972 @default.
- W4386002539 hasConcept C112698675 @default.
- W4386002539 hasConcept C125403950 @default.
- W4386002539 hasConcept C136764020 @default.
- W4386002539 hasConcept C144133560 @default.
- W4386002539 hasConcept C18903297 @default.
- W4386002539 hasConcept C199360897 @default.
- W4386002539 hasConcept C205649164 @default.