Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386002571> ?p ?o ?g. }
- W4386002571 endingPage "166363" @default.
- W4386002571 startingPage "166363" @default.
- W4386002571 abstract "In recent years, under the dual pressure of climate change and human activities, the cyanobacteria blooms in inland waters have become a threat to global aquatic ecosystems and the environment. Phycocyanin (PC), a diagnostic pigment of cyanobacteria, plays an essential role in the detection and early warning of cyanobacterial blooms. In this context, accurate estimation of PC concentration in turbid waters by remote sensing is challenging due to optical complexity and weak optical signal. In this study, we collected a comprehensive dataset of 640 pairs of in situ measured pigment concentration and the Ocean and Land Color Instrument (OLCI) reflectance from 25 lakes and reservoirs in China during 2020–2022. We then developed a framework consisting of the water optical classification algorithm and three candidate algorithms: baseline height, band ratio, and three-band algorithm. The optical classification method used remote sensing reflectance (Rrs) baseline height in three bands: Rrs(560), Rrs(647) and Rrs(709) to classify the samples into five types, each with a specific spectral shape and water quality character. The improvement of PC estimation accuracy for optically classified waters was shown by comparison with unclassified waters with RMSE = 72.6 μg L−1, MAPE = 80.4 %, especially for the samples with low PC concentration. The results show that the band ratio algorithm has a strong universality, which is suitable for medium turbid and clean water. In addition, the three-band algorithm is only suitable for medium turbid water, and the line height algorithm is only suitable for high PC content water. Furthermore, the five distinguished types with significant differences in the value of the PC/Chla ratio well indicated the risk rank assessment of cyanobacteria. In conclusion, the proposed framework in this paper solved the problem of PC estimation accuracy problem in optically complex waters and provided a new strategy for water quality inversion in inland waters." @default.
- W4386002571 created "2023-08-20" @default.
- W4386002571 creator A5023214008 @default.
- W4386002571 creator A5027200482 @default.
- W4386002571 creator A5028724918 @default.
- W4386002571 creator A5032469771 @default.
- W4386002571 creator A5034134503 @default.
- W4386002571 creator A5046878806 @default.
- W4386002571 creator A5047954931 @default.
- W4386002571 creator A5048845021 @default.
- W4386002571 creator A5053353636 @default.
- W4386002571 creator A5063761923 @default.
- W4386002571 creator A5064376545 @default.
- W4386002571 date "2023-11-01" @default.
- W4386002571 modified "2023-10-12" @default.
- W4386002571 title "Remote estimation of phycocyanin concentration in inland waters based on optical classification" @default.
- W4386002571 cites W1500517352 @default.
- W4386002571 cites W1972660144 @default.
- W4386002571 cites W1979397346 @default.
- W4386002571 cites W1980264154 @default.
- W4386002571 cites W1983640103 @default.
- W4386002571 cites W1984506656 @default.
- W4386002571 cites W1988358852 @default.
- W4386002571 cites W1996547849 @default.
- W4386002571 cites W2001899431 @default.
- W4386002571 cites W2009751365 @default.
- W4386002571 cites W2040621183 @default.
- W4386002571 cites W2043491182 @default.
- W4386002571 cites W2046607312 @default.
- W4386002571 cites W2052936914 @default.
- W4386002571 cites W2056003716 @default.
- W4386002571 cites W2058864461 @default.
- W4386002571 cites W2059455603 @default.
- W4386002571 cites W2065737581 @default.
- W4386002571 cites W2076073221 @default.
- W4386002571 cites W2081892573 @default.
- W4386002571 cites W2082714424 @default.
- W4386002571 cites W2092031707 @default.
- W4386002571 cites W2094825746 @default.
- W4386002571 cites W2111672120 @default.
- W4386002571 cites W2112585880 @default.
- W4386002571 cites W2112620472 @default.
- W4386002571 cites W2113993374 @default.
- W4386002571 cites W2114164280 @default.
- W4386002571 cites W2114830926 @default.
- W4386002571 cites W2127188196 @default.
- W4386002571 cites W2128917670 @default.
- W4386002571 cites W2131713496 @default.
- W4386002571 cites W2134138418 @default.
- W4386002571 cites W2136758825 @default.
- W4386002571 cites W2143582968 @default.
- W4386002571 cites W2159232670 @default.
- W4386002571 cites W2163293441 @default.
- W4386002571 cites W2164526724 @default.
- W4386002571 cites W2168565615 @default.
- W4386002571 cites W2312302393 @default.
- W4386002571 cites W2349236105 @default.
- W4386002571 cites W2624257914 @default.
- W4386002571 cites W2646400958 @default.
- W4386002571 cites W2764084117 @default.
- W4386002571 cites W2766454881 @default.
- W4386002571 cites W2766607790 @default.
- W4386002571 cites W2804532080 @default.
- W4386002571 cites W2901037872 @default.
- W4386002571 cites W2911555457 @default.
- W4386002571 cites W2975028292 @default.
- W4386002571 cites W2997726608 @default.
- W4386002571 cites W3002294342 @default.
- W4386002571 cites W3006545639 @default.
- W4386002571 cites W3006602057 @default.
- W4386002571 cites W3007803510 @default.
- W4386002571 cites W3012138150 @default.
- W4386002571 cites W3016472101 @default.
- W4386002571 cites W3016950746 @default.
- W4386002571 cites W3018952706 @default.
- W4386002571 cites W3034043669 @default.
- W4386002571 cites W3043406925 @default.
- W4386002571 cites W3104341624 @default.
- W4386002571 cites W3129522569 @default.
- W4386002571 cites W3131845810 @default.
- W4386002571 cites W3159276933 @default.
- W4386002571 cites W3175734523 @default.
- W4386002571 cites W3205590126 @default.
- W4386002571 cites W3209908932 @default.
- W4386002571 cites W4205279138 @default.
- W4386002571 cites W4211010233 @default.
- W4386002571 cites W4220666015 @default.
- W4386002571 cites W4220900764 @default.
- W4386002571 cites W4281484929 @default.
- W4386002571 cites W4285808993 @default.
- W4386002571 cites W4294242339 @default.
- W4386002571 cites W4296934883 @default.
- W4386002571 doi "https://doi.org/10.1016/j.scitotenv.2023.166363" @default.
- W4386002571 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37598955" @default.
- W4386002571 hasPublicationYear "2023" @default.
- W4386002571 type Work @default.
- W4386002571 citedByCount "0" @default.
- W4386002571 crossrefType "journal-article" @default.