Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386002806> ?p ?o ?g. }
- W4386002806 endingPage "121165" @default.
- W4386002806 startingPage "121165" @default.
- W4386002806 abstract "Computer-aided diagnosis for low-dose computed tomography (CT) based on deep learning has recently attracted attention as a first-line automatic testing tool because of its high accuracy and low radiation exposure. We propose a method based on a deep neural network for computer-aided diagnosis called virtual multi-view projection and reconstruction for unsupervised anomaly detection (VMPR-UAD) in low-dose chest CT. Presumably, this is the novel method that only requires data from healthy patients for training to identify three-dimensional (3D) regions containing any anomalies. The method has three key components. Unlike existing computer-aided diagnosis tools that use conventional CT slices as the network input, our method (1) improves the recognition of 3D lung structures by virtually projecting an extracted 3D lung region to obtain two-dimensional (2D) images from diverse views to serve as network inputs, (2) accommodates the input diversity gain for accurate anomaly detection, and (3) achieves 3D anomaly/disease localization through a novel 3D map restoration method using multiple 2D anomaly maps. The proposed method based on unsupervised learning showed a high performance in pneumonia, tuberculosis, and both diseases with patient-level anomaly detection performance of 0.965 area under the curve (AUC) (95% confidence interval (CI); (0.955, 0.972)), 0.948 AUC (95% CI; (0.928, 0.966)), and 0.963 AUC (95% CI; (0.955, 0.970)), respectively. Additionally, our technology visualizes anomalous regions in the 3D perspective. This achieved 93% accuracy in visualizing the location of lung cancer lesions through external validation. These results highlight the potential of a new AI methodology without utilizing disease data learning; this can secure AI model prediction stability by reducing the false negative rate that occurs in various patterns of diseases." @default.
- W4386002806 created "2023-08-20" @default.
- W4386002806 creator A5007845743 @default.
- W4386002806 creator A5015569154 @default.
- W4386002806 creator A5022590014 @default.
- W4386002806 creator A5024870164 @default.
- W4386002806 date "2024-02-01" @default.
- W4386002806 modified "2023-10-12" @default.
- W4386002806 title "3D unsupervised anomaly detection through virtual multi-view projection and reconstruction: Clinical validation on low-dose chest computed tomography" @default.
- W4386002806 cites W1967199680 @default.
- W4386002806 cites W1970057685 @default.
- W4386002806 cites W1986610328 @default.
- W4386002806 cites W2009911194 @default.
- W4386002806 cites W2058550737 @default.
- W4386002806 cites W2127060405 @default.
- W4386002806 cites W2127519854 @default.
- W4386002806 cites W2160640763 @default.
- W4386002806 cites W2166125767 @default.
- W4386002806 cites W2171697262 @default.
- W4386002806 cites W2322371438 @default.
- W4386002806 cites W2326391623 @default.
- W4386002806 cites W2596238987 @default.
- W4386002806 cites W2755386144 @default.
- W4386002806 cites W2783895116 @default.
- W4386002806 cites W2887106474 @default.
- W4386002806 cites W2888538030 @default.
- W4386002806 cites W2897755679 @default.
- W4386002806 cites W2914570111 @default.
- W4386002806 cites W2946185430 @default.
- W4386002806 cites W2962934715 @default.
- W4386002806 cites W2963524571 @default.
- W4386002806 cites W2998072408 @default.
- W4386002806 cites W3007935259 @default.
- W4386002806 cites W3017403618 @default.
- W4386002806 cites W3023594394 @default.
- W4386002806 cites W3027914507 @default.
- W4386002806 cites W3036091710 @default.
- W4386002806 cites W3054666633 @default.
- W4386002806 cites W3100327638 @default.
- W4386002806 cites W3102190365 @default.
- W4386002806 cites W3108656121 @default.
- W4386002806 cites W3148753670 @default.
- W4386002806 cites W3161718150 @default.
- W4386002806 cites W3166166117 @default.
- W4386002806 cites W4200246745 @default.
- W4386002806 cites W4205448747 @default.
- W4386002806 cites W4225404354 @default.
- W4386002806 cites W4225426831 @default.
- W4386002806 cites W4379390759 @default.
- W4386002806 cites W4385805156 @default.
- W4386002806 doi "https://doi.org/10.1016/j.eswa.2023.121165" @default.
- W4386002806 hasPublicationYear "2024" @default.
- W4386002806 type Work @default.
- W4386002806 citedByCount "0" @default.
- W4386002806 crossrefType "journal-article" @default.
- W4386002806 hasAuthorship W4386002806A5007845743 @default.
- W4386002806 hasAuthorship W4386002806A5015569154 @default.
- W4386002806 hasAuthorship W4386002806A5022590014 @default.
- W4386002806 hasAuthorship W4386002806A5024870164 @default.
- W4386002806 hasBestOaLocation W43860028061 @default.
- W4386002806 hasConcept C108583219 @default.
- W4386002806 hasConcept C11413529 @default.
- W4386002806 hasConcept C119857082 @default.
- W4386002806 hasConcept C121332964 @default.
- W4386002806 hasConcept C126838900 @default.
- W4386002806 hasConcept C12997251 @default.
- W4386002806 hasConcept C153180895 @default.
- W4386002806 hasConcept C154945302 @default.
- W4386002806 hasConcept C26873012 @default.
- W4386002806 hasConcept C41008148 @default.
- W4386002806 hasConcept C544519230 @default.
- W4386002806 hasConcept C57493831 @default.
- W4386002806 hasConcept C58471807 @default.
- W4386002806 hasConcept C71924100 @default.
- W4386002806 hasConcept C739882 @default.
- W4386002806 hasConceptScore W4386002806C108583219 @default.
- W4386002806 hasConceptScore W4386002806C11413529 @default.
- W4386002806 hasConceptScore W4386002806C119857082 @default.
- W4386002806 hasConceptScore W4386002806C121332964 @default.
- W4386002806 hasConceptScore W4386002806C126838900 @default.
- W4386002806 hasConceptScore W4386002806C12997251 @default.
- W4386002806 hasConceptScore W4386002806C153180895 @default.
- W4386002806 hasConceptScore W4386002806C154945302 @default.
- W4386002806 hasConceptScore W4386002806C26873012 @default.
- W4386002806 hasConceptScore W4386002806C41008148 @default.
- W4386002806 hasConceptScore W4386002806C544519230 @default.
- W4386002806 hasConceptScore W4386002806C57493831 @default.
- W4386002806 hasConceptScore W4386002806C58471807 @default.
- W4386002806 hasConceptScore W4386002806C71924100 @default.
- W4386002806 hasConceptScore W4386002806C739882 @default.
- W4386002806 hasLocation W43860028061 @default.
- W4386002806 hasOpenAccess W4386002806 @default.
- W4386002806 hasPrimaryLocation W43860028061 @default.
- W4386002806 hasRelatedWork W2143820878 @default.
- W4386002806 hasRelatedWork W2667207928 @default.
- W4386002806 hasRelatedWork W2806741695 @default.
- W4386002806 hasRelatedWork W2912112202 @default.
- W4386002806 hasRelatedWork W3189286258 @default.