Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386002849> ?p ?o ?g. }
- W4386002849 endingPage "106004" @default.
- W4386002849 startingPage "106004" @default.
- W4386002849 abstract "Bovine tuberculosis (bTB) continues to be the costliest, most complex animal health problem in England. The effectiveness of the test-and-slaughter policy is hampered by the imperfect sensitivity of the surveillance tests. Up to half of recurrent incidents within 24 months of a previous one could have been due to undetected infected cattle not being removed. Improving diagnostic testing with more sensitive tests, like the interferon (IFN)-gamma test, is one of the government’s top priorities. However, blanket deployment of such tests could result in more false positive results (due to imperfect specificity), together with logistical and cost-efficiency challenges. A targeted application of such tests in higher prevalence scenarios, such as a subpopulation of high-risk herds, could mitigate against these challenges. We developed classification machine learning algorithms (using 80% of 2012-2019 bTB surveillance data as the training set) to evaluate the deployment of IFN-gamma testing in high-risk herds (i.e. those at risk of an incident in England) in two testing data sets: i) the remaining 20% of 2012-19 data, and ii) 2020 bTB surveillance data. The resulting model, classification tree analysis, with an area under a receiver operating characteristic (ROC) curve (AUC) > 95, showed a 73% sensitivity and a 97% specificity in the 2012-2019 test dataset. Used on 2020 data, it predicted eight percent (3 510 of 41 493) of eligible active herds as at-risk of a bTB incident, the majority of them (66% or 2 328 herds) experiencing at least one. Whilst all predicted at-risk herds could have preventive measures applied, the additional application of IFN-gamma test in parallel interpretation to the statutory skin test, if the risk materialises, would have resulted in 8 585 additional IFN-gamma reactors detected (a 217% increase over the 2 710 IFN-gamma reactors already detected by tests carried out). Only 18% (330 of 1 819) of incidents in predicted high-risk herds had the IFN-gamma test applied in 2020. We therefore conclude that this methodology provides a better way of directing the application of the IFN-gamma test towards the high-risk subgroup of herds. Classification tree analysis ensured the systematic identification of high-risk herds to consistently apply additional measures in a targeted way. This could increase the detection of infected cattle more efficiently, preventing recurrence and accelerating efforts to achieve eradication by 2038. This methodology has wider application, like targeting improved biosecurity measures in avian influenza at-risk farms to limit damage to the industry in future outbreaks." @default.
- W4386002849 created "2023-08-20" @default.
- W4386002849 creator A5002937877 @default.
- W4386002849 creator A5015012010 @default.
- W4386002849 creator A5017864445 @default.
- W4386002849 creator A5024502203 @default.
- W4386002849 creator A5033211172 @default.
- W4386002849 creator A5045013681 @default.
- W4386002849 creator A5060198611 @default.
- W4386002849 date "2023-10-01" @default.
- W4386002849 modified "2023-10-12" @default.
- W4386002849 title "Assessing the potential impact of applying a higher sensitivity test to selected cattle populations for the control of bovine tuberculosis in England" @default.
- W4386002849 cites W1558799345 @default.
- W4386002849 cites W1748890816 @default.
- W4386002849 cites W1968080521 @default.
- W4386002849 cites W1970438857 @default.
- W4386002849 cites W1983205045 @default.
- W4386002849 cites W1984003294 @default.
- W4386002849 cites W1987317873 @default.
- W4386002849 cites W2018006165 @default.
- W4386002849 cites W2036493275 @default.
- W4386002849 cites W2043925497 @default.
- W4386002849 cites W2055962544 @default.
- W4386002849 cites W2070230130 @default.
- W4386002849 cites W2080099163 @default.
- W4386002849 cites W2112081959 @default.
- W4386002849 cites W2129355359 @default.
- W4386002849 cites W2141902806 @default.
- W4386002849 cites W2147910956 @default.
- W4386002849 cites W2148143831 @default.
- W4386002849 cites W2159161166 @default.
- W4386002849 cites W2257795092 @default.
- W4386002849 cites W2329603547 @default.
- W4386002849 cites W2334028018 @default.
- W4386002849 cites W2418698374 @default.
- W4386002849 cites W2480829649 @default.
- W4386002849 cites W2588384656 @default.
- W4386002849 cites W2594794296 @default.
- W4386002849 cites W2607507174 @default.
- W4386002849 cites W2765594214 @default.
- W4386002849 cites W2911964244 @default.
- W4386002849 cites W2947332671 @default.
- W4386002849 cites W2972647367 @default.
- W4386002849 cites W3121022942 @default.
- W4386002849 cites W4254918540 @default.
- W4386002849 doi "https://doi.org/10.1016/j.prevetmed.2023.106004" @default.
- W4386002849 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37647718" @default.
- W4386002849 hasPublicationYear "2023" @default.
- W4386002849 type Work @default.
- W4386002849 citedByCount "0" @default.
- W4386002849 crossrefType "journal-article" @default.
- W4386002849 hasAuthorship W4386002849A5002937877 @default.
- W4386002849 hasAuthorship W4386002849A5015012010 @default.
- W4386002849 hasAuthorship W4386002849A5017864445 @default.
- W4386002849 hasAuthorship W4386002849A5024502203 @default.
- W4386002849 hasAuthorship W4386002849A5033211172 @default.
- W4386002849 hasAuthorship W4386002849A5045013681 @default.
- W4386002849 hasAuthorship W4386002849A5060198611 @default.
- W4386002849 hasBestOaLocation W43860028491 @default.
- W4386002849 hasConcept C105795698 @default.
- W4386002849 hasConcept C119857082 @default.
- W4386002849 hasConcept C12174686 @default.
- W4386002849 hasConcept C142724271 @default.
- W4386002849 hasConcept C18903297 @default.
- W4386002849 hasConcept C194775826 @default.
- W4386002849 hasConcept C2777267654 @default.
- W4386002849 hasConcept C2777975735 @default.
- W4386002849 hasConcept C2778497218 @default.
- W4386002849 hasConcept C2781069245 @default.
- W4386002849 hasConcept C3018264790 @default.
- W4386002849 hasConcept C33923547 @default.
- W4386002849 hasConcept C38652104 @default.
- W4386002849 hasConcept C41008148 @default.
- W4386002849 hasConcept C42972112 @default.
- W4386002849 hasConcept C58471807 @default.
- W4386002849 hasConcept C71924100 @default.
- W4386002849 hasConcept C82157600 @default.
- W4386002849 hasConcept C86803240 @default.
- W4386002849 hasConcept C99454951 @default.
- W4386002849 hasConceptScore W4386002849C105795698 @default.
- W4386002849 hasConceptScore W4386002849C119857082 @default.
- W4386002849 hasConceptScore W4386002849C12174686 @default.
- W4386002849 hasConceptScore W4386002849C142724271 @default.
- W4386002849 hasConceptScore W4386002849C18903297 @default.
- W4386002849 hasConceptScore W4386002849C194775826 @default.
- W4386002849 hasConceptScore W4386002849C2777267654 @default.
- W4386002849 hasConceptScore W4386002849C2777975735 @default.
- W4386002849 hasConceptScore W4386002849C2778497218 @default.
- W4386002849 hasConceptScore W4386002849C2781069245 @default.
- W4386002849 hasConceptScore W4386002849C3018264790 @default.
- W4386002849 hasConceptScore W4386002849C33923547 @default.
- W4386002849 hasConceptScore W4386002849C38652104 @default.
- W4386002849 hasConceptScore W4386002849C41008148 @default.
- W4386002849 hasConceptScore W4386002849C42972112 @default.
- W4386002849 hasConceptScore W4386002849C58471807 @default.
- W4386002849 hasConceptScore W4386002849C71924100 @default.
- W4386002849 hasConceptScore W4386002849C82157600 @default.
- W4386002849 hasConceptScore W4386002849C86803240 @default.