Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386003583> ?p ?o ?g. }
- W4386003583 endingPage "105163" @default.
- W4386003583 startingPage "105163" @default.
- W4386003583 abstract "The nine components (9C) seismic data acquired with three-component (3C) sources and 3C receivers is beneficial to the inversion of lithologic reservoirs with high resolution. However, physical constraints and the trade-off between cost and data quality often result in under-sampled acquisition. For the 3D9C incomplete seismic data, conventional methods generally reconstruct each component data separately, which could not fully use the implicit relationship between the multi-component data and it is time-consuming. In this paper, we present a novel method based on a multi-scale U-Net (MSU-Net) to reconstruct 3D9C seismic data simultaneously. Compared with the U-Net, MSU-Net introduces multiple encoder and decoder sub-networks with different layers, which are connected through a series of nested and dense skip pathways. Through these re-designed skip pathways, the large scale feature maps with low-frequency information from shallow sub-networks and the small scale feature maps with high-frequency information from deep sub-networks are concatenated in each up-sample operator, which is more useful to reconstruct the seismic data with big gaps. Additionally, the three-channel input layer is designed in the MSU-Net according to the characteristics of the 3D9C data to implement 3C data reconstruction simultaneously. The MSU-Net is trained to learn the nonlinear relationship between the 3C data generated by the x-component source adaptively, and then simultaneously reconstructs the other 9C data in three times. Several examples of 3D9C seismic data reconstruction are used to evaluate the performance of the trained MSU-Net in comparison with U-Net and other traditional methods like the parabolic Radon transform. The reconstruction results demonstrate the effectiveness of the proposed method." @default.
- W4386003583 created "2023-08-20" @default.
- W4386003583 creator A5018095530 @default.
- W4386003583 creator A5050539312 @default.
- W4386003583 creator A5054505269 @default.
- W4386003583 creator A5071029445 @default.
- W4386003583 date "2023-09-01" @default.
- W4386003583 modified "2023-10-12" @default.
- W4386003583 title "3D9C seismic data reconstruction with multi-scale convolution neural network" @default.
- W4386003583 cites W1640851730 @default.
- W4386003583 cites W1885185971 @default.
- W4386003583 cites W1990498189 @default.
- W4386003583 cites W1995726128 @default.
- W4386003583 cites W2013211738 @default.
- W4386003583 cites W2090296963 @default.
- W4386003583 cites W2105304793 @default.
- W4386003583 cites W2139536096 @default.
- W4386003583 cites W2147497470 @default.
- W4386003583 cites W2157556196 @default.
- W4386003583 cites W2160547390 @default.
- W4386003583 cites W2170860899 @default.
- W4386003583 cites W2618530766 @default.
- W4386003583 cites W2620839831 @default.
- W4386003583 cites W2776535170 @default.
- W4386003583 cites W2892183045 @default.
- W4386003583 cites W2900936384 @default.
- W4386003583 cites W2905560685 @default.
- W4386003583 cites W2937694781 @default.
- W4386003583 cites W2955869164 @default.
- W4386003583 cites W2988289215 @default.
- W4386003583 cites W3001732295 @default.
- W4386003583 cites W3032305282 @default.
- W4386003583 cites W3091176775 @default.
- W4386003583 cites W3104324122 @default.
- W4386003583 cites W3105798281 @default.
- W4386003583 cites W3128326574 @default.
- W4386003583 cites W3138515421 @default.
- W4386003583 cites W3156720395 @default.
- W4386003583 cites W3162311166 @default.
- W4386003583 cites W3176317883 @default.
- W4386003583 cites W3188543266 @default.
- W4386003583 cites W3211881915 @default.
- W4386003583 cites W4250955649 @default.
- W4386003583 cites W4302028744 @default.
- W4386003583 cites W4313042884 @default.
- W4386003583 cites W4386325717 @default.
- W4386003583 doi "https://doi.org/10.1016/j.jappgeo.2023.105163" @default.
- W4386003583 hasPublicationYear "2023" @default.
- W4386003583 type Work @default.
- W4386003583 citedByCount "0" @default.
- W4386003583 crossrefType "journal-article" @default.
- W4386003583 hasAuthorship W4386003583A5018095530 @default.
- W4386003583 hasAuthorship W4386003583A5050539312 @default.
- W4386003583 hasAuthorship W4386003583A5054505269 @default.
- W4386003583 hasAuthorship W4386003583A5071029445 @default.
- W4386003583 hasConcept C11413529 @default.
- W4386003583 hasConcept C121332964 @default.
- W4386003583 hasConcept C124101348 @default.
- W4386003583 hasConcept C127313418 @default.
- W4386003583 hasConcept C138885662 @default.
- W4386003583 hasConcept C153180895 @default.
- W4386003583 hasConcept C154945302 @default.
- W4386003583 hasConcept C165205528 @default.
- W4386003583 hasConcept C168167062 @default.
- W4386003583 hasConcept C1893757 @default.
- W4386003583 hasConcept C205649164 @default.
- W4386003583 hasConcept C2776401178 @default.
- W4386003583 hasConcept C2778755073 @default.
- W4386003583 hasConcept C41008148 @default.
- W4386003583 hasConcept C41895202 @default.
- W4386003583 hasConcept C50644808 @default.
- W4386003583 hasConcept C58640448 @default.
- W4386003583 hasConcept C77928131 @default.
- W4386003583 hasConcept C97355855 @default.
- W4386003583 hasConceptScore W4386003583C11413529 @default.
- W4386003583 hasConceptScore W4386003583C121332964 @default.
- W4386003583 hasConceptScore W4386003583C124101348 @default.
- W4386003583 hasConceptScore W4386003583C127313418 @default.
- W4386003583 hasConceptScore W4386003583C138885662 @default.
- W4386003583 hasConceptScore W4386003583C153180895 @default.
- W4386003583 hasConceptScore W4386003583C154945302 @default.
- W4386003583 hasConceptScore W4386003583C165205528 @default.
- W4386003583 hasConceptScore W4386003583C168167062 @default.
- W4386003583 hasConceptScore W4386003583C1893757 @default.
- W4386003583 hasConceptScore W4386003583C205649164 @default.
- W4386003583 hasConceptScore W4386003583C2776401178 @default.
- W4386003583 hasConceptScore W4386003583C2778755073 @default.
- W4386003583 hasConceptScore W4386003583C41008148 @default.
- W4386003583 hasConceptScore W4386003583C41895202 @default.
- W4386003583 hasConceptScore W4386003583C50644808 @default.
- W4386003583 hasConceptScore W4386003583C58640448 @default.
- W4386003583 hasConceptScore W4386003583C77928131 @default.
- W4386003583 hasConceptScore W4386003583C97355855 @default.
- W4386003583 hasFunder F4320321001 @default.
- W4386003583 hasLocation W43860035831 @default.
- W4386003583 hasOpenAccess W4386003583 @default.
- W4386003583 hasPrimaryLocation W43860035831 @default.
- W4386003583 hasRelatedWork W1855558850 @default.