Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386003627> ?p ?o ?g. }
- W4386003627 endingPage "110766" @default.
- W4386003627 startingPage "110766" @default.
- W4386003627 abstract "Deep learning often requires large amounts of labeled data to train the model, which is not always readily available in the field of speech emotion recognition (SER). Researchers have done some research on SER in few shot conditions, but there are still some problems in overfitting and domain transfer of training. In this study, a few-shot learning method based on meta-transfer learning with domain adaption (MTLDA) is proposed for SER. It not only effectively reduces the over-fitting phenomenon of deep neural networks (DNN) trained with a small number of samples, but also solves the forgetting problem in meta-learning and the target domain adaptability problem in transfer learning. Experiments on three databases (i.e., CASIA is used for pre-training, Emo-DB and SAVEE are used for few-shot learning) are performed for few-shot learning of SER, from which the WAR is 65.12% and UAR is 64.50% on Emo-DB, and the WAR is 58.84% and UAR is 53.26% on SAVEE." @default.
- W4386003627 created "2023-08-20" @default.
- W4386003627 creator A5007028347 @default.
- W4386003627 creator A5008638025 @default.
- W4386003627 creator A5071282606 @default.
- W4386003627 creator A5071931425 @default.
- W4386003627 creator A5074710425 @default.
- W4386003627 date "2023-11-01" @default.
- W4386003627 modified "2023-10-12" @default.
- W4386003627 title "Speech emotion recognition based on meta-transfer learning with domain adaption" @default.
- W4386003627 cites W175750906 @default.
- W4386003627 cites W2602034649 @default.
- W4386003627 cites W2605244930 @default.
- W4386003627 cites W2738561771 @default.
- W4386003627 cites W2754021867 @default.
- W4386003627 cites W2798836702 @default.
- W4386003627 cites W2889717020 @default.
- W4386003627 cites W2944114271 @default.
- W4386003627 cites W2950518992 @default.
- W4386003627 cites W2963943197 @default.
- W4386003627 cites W2964105864 @default.
- W4386003627 cites W2969889150 @default.
- W4386003627 cites W2972273766 @default.
- W4386003627 cites W2997399314 @default.
- W4386003627 cites W3000894155 @default.
- W4386003627 cites W3007836063 @default.
- W4386003627 cites W3013363049 @default.
- W4386003627 cites W3016962243 @default.
- W4386003627 cites W3022013598 @default.
- W4386003627 cites W3028860956 @default.
- W4386003627 cites W3034354010 @default.
- W4386003627 cites W3034453888 @default.
- W4386003627 cites W3034882073 @default.
- W4386003627 cites W3035383808 @default.
- W4386003627 cites W3041133507 @default.
- W4386003627 cites W3043308633 @default.
- W4386003627 cites W3086505308 @default.
- W4386003627 cites W3090425814 @default.
- W4386003627 cites W3118284102 @default.
- W4386003627 cites W3129285739 @default.
- W4386003627 cites W3131151895 @default.
- W4386003627 cites W3131324121 @default.
- W4386003627 cites W3137448811 @default.
- W4386003627 cites W3164193681 @default.
- W4386003627 cites W4379203891 @default.
- W4386003627 doi "https://doi.org/10.1016/j.asoc.2023.110766" @default.
- W4386003627 hasPublicationYear "2023" @default.
- W4386003627 type Work @default.
- W4386003627 citedByCount "0" @default.
- W4386003627 crossrefType "journal-article" @default.
- W4386003627 hasAuthorship W4386003627A5007028347 @default.
- W4386003627 hasAuthorship W4386003627A5008638025 @default.
- W4386003627 hasAuthorship W4386003627A5071282606 @default.
- W4386003627 hasAuthorship W4386003627A5071931425 @default.
- W4386003627 hasAuthorship W4386003627A5074710425 @default.
- W4386003627 hasConcept C108583219 @default.
- W4386003627 hasConcept C119857082 @default.
- W4386003627 hasConcept C134306372 @default.
- W4386003627 hasConcept C150899416 @default.
- W4386003627 hasConcept C153180895 @default.
- W4386003627 hasConcept C154945302 @default.
- W4386003627 hasConcept C15744967 @default.
- W4386003627 hasConcept C162324750 @default.
- W4386003627 hasConcept C180747234 @default.
- W4386003627 hasConcept C187736073 @default.
- W4386003627 hasConcept C202444582 @default.
- W4386003627 hasConcept C22019652 @default.
- W4386003627 hasConcept C2780451532 @default.
- W4386003627 hasConcept C2781002164 @default.
- W4386003627 hasConcept C28490314 @default.
- W4386003627 hasConcept C33923547 @default.
- W4386003627 hasConcept C36503486 @default.
- W4386003627 hasConcept C41008148 @default.
- W4386003627 hasConcept C50644808 @default.
- W4386003627 hasConcept C7149132 @default.
- W4386003627 hasConcept C9652623 @default.
- W4386003627 hasConceptScore W4386003627C108583219 @default.
- W4386003627 hasConceptScore W4386003627C119857082 @default.
- W4386003627 hasConceptScore W4386003627C134306372 @default.
- W4386003627 hasConceptScore W4386003627C150899416 @default.
- W4386003627 hasConceptScore W4386003627C153180895 @default.
- W4386003627 hasConceptScore W4386003627C154945302 @default.
- W4386003627 hasConceptScore W4386003627C15744967 @default.
- W4386003627 hasConceptScore W4386003627C162324750 @default.
- W4386003627 hasConceptScore W4386003627C180747234 @default.
- W4386003627 hasConceptScore W4386003627C187736073 @default.
- W4386003627 hasConceptScore W4386003627C202444582 @default.
- W4386003627 hasConceptScore W4386003627C22019652 @default.
- W4386003627 hasConceptScore W4386003627C2780451532 @default.
- W4386003627 hasConceptScore W4386003627C2781002164 @default.
- W4386003627 hasConceptScore W4386003627C28490314 @default.
- W4386003627 hasConceptScore W4386003627C33923547 @default.
- W4386003627 hasConceptScore W4386003627C36503486 @default.
- W4386003627 hasConceptScore W4386003627C41008148 @default.
- W4386003627 hasConceptScore W4386003627C50644808 @default.
- W4386003627 hasConceptScore W4386003627C7149132 @default.
- W4386003627 hasConceptScore W4386003627C9652623 @default.
- W4386003627 hasLocation W43860036271 @default.