Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386004619> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4386004619 endingPage "223" @default.
- W4386004619 startingPage "215" @default.
- W4386004619 abstract "Supply chain gradually becomes a core factor to operate and develop for businesses. Using machine learning, especially with neural networks, to assess the risk in supply chain network has been attracted many research and become potential approaches. Via machine learning particular to Bayesian neural network, risk evaluation in supply chain network can be performed effectively to support supply chain partners to assess, identify, monitor, and mitigate risks. In detail, by using reliability theory, supply chain network’s risk is divided in alternative scales (from Very high risk to Very low risk). The Bayesian neural network allows to treat the weights and outputs as the variables in order to find their marginal distributions that best fit the data. By taking the advantage of Bayesian neural network in deep learning, the experiment in this paper shows a very high accuracy rate in supply chain risk prediction. This implicates the performance of using machine learning in supporting of managerial decision making in selecting suppliers." @default.
- W4386004619 created "2023-08-20" @default.
- W4386004619 creator A5047772962 @default.
- W4386004619 creator A5052837369 @default.
- W4386004619 creator A5092666036 @default.
- W4386004619 date "2023-01-01" @default.
- W4386004619 modified "2023-10-12" @default.
- W4386004619 title "Predict Risk Assessment in Supply Chain Networks with Machine Learning" @default.
- W4386004619 cites W1606925814 @default.
- W4386004619 cites W2037210063 @default.
- W4386004619 cites W2117360592 @default.
- W4386004619 cites W2128280167 @default.
- W4386004619 cites W2966327746 @default.
- W4386004619 cites W2994789928 @default.
- W4386004619 cites W2994980136 @default.
- W4386004619 cites W3009913542 @default.
- W4386004619 cites W3035856362 @default.
- W4386004619 cites W3089649929 @default.
- W4386004619 cites W3174311899 @default.
- W4386004619 cites W3192863802 @default.
- W4386004619 cites W3197996391 @default.
- W4386004619 doi "https://doi.org/10.1007/978-981-99-4725-6_27" @default.
- W4386004619 hasPublicationYear "2023" @default.
- W4386004619 type Work @default.
- W4386004619 citedByCount "0" @default.
- W4386004619 crossrefType "book-chapter" @default.
- W4386004619 hasAuthorship W4386004619A5047772962 @default.
- W4386004619 hasAuthorship W4386004619A5052837369 @default.
- W4386004619 hasAuthorship W4386004619A5092666036 @default.
- W4386004619 hasConcept C108713360 @default.
- W4386004619 hasConcept C112930515 @default.
- W4386004619 hasConcept C119857082 @default.
- W4386004619 hasConcept C121332964 @default.
- W4386004619 hasConcept C144133560 @default.
- W4386004619 hasConcept C154945302 @default.
- W4386004619 hasConcept C162853370 @default.
- W4386004619 hasConcept C163258240 @default.
- W4386004619 hasConcept C192639820 @default.
- W4386004619 hasConcept C33724603 @default.
- W4386004619 hasConcept C41008148 @default.
- W4386004619 hasConcept C43214815 @default.
- W4386004619 hasConcept C44104985 @default.
- W4386004619 hasConcept C48840187 @default.
- W4386004619 hasConcept C50644808 @default.
- W4386004619 hasConcept C62520636 @default.
- W4386004619 hasConceptScore W4386004619C108713360 @default.
- W4386004619 hasConceptScore W4386004619C112930515 @default.
- W4386004619 hasConceptScore W4386004619C119857082 @default.
- W4386004619 hasConceptScore W4386004619C121332964 @default.
- W4386004619 hasConceptScore W4386004619C144133560 @default.
- W4386004619 hasConceptScore W4386004619C154945302 @default.
- W4386004619 hasConceptScore W4386004619C162853370 @default.
- W4386004619 hasConceptScore W4386004619C163258240 @default.
- W4386004619 hasConceptScore W4386004619C192639820 @default.
- W4386004619 hasConceptScore W4386004619C33724603 @default.
- W4386004619 hasConceptScore W4386004619C41008148 @default.
- W4386004619 hasConceptScore W4386004619C43214815 @default.
- W4386004619 hasConceptScore W4386004619C44104985 @default.
- W4386004619 hasConceptScore W4386004619C48840187 @default.
- W4386004619 hasConceptScore W4386004619C50644808 @default.
- W4386004619 hasConceptScore W4386004619C62520636 @default.
- W4386004619 hasLocation W43860046191 @default.
- W4386004619 hasOpenAccess W4386004619 @default.
- W4386004619 hasPrimaryLocation W43860046191 @default.
- W4386004619 hasRelatedWork W2015686463 @default.
- W4386004619 hasRelatedWork W2057686421 @default.
- W4386004619 hasRelatedWork W2145181404 @default.
- W4386004619 hasRelatedWork W2259073436 @default.
- W4386004619 hasRelatedWork W2260567777 @default.
- W4386004619 hasRelatedWork W2802259157 @default.
- W4386004619 hasRelatedWork W3133357750 @default.
- W4386004619 hasRelatedWork W3213284516 @default.
- W4386004619 hasRelatedWork W4283832168 @default.
- W4386004619 hasRelatedWork W597226891 @default.
- W4386004619 isParatext "false" @default.
- W4386004619 isRetracted "false" @default.
- W4386004619 workType "book-chapter" @default.