Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386004709> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4386004709 endingPage "20" @default.
- W4386004709 startingPage "11" @default.
- W4386004709 abstract "The finite element method (FEM) is a well-known method for numerically solving partial differential equations (PDEs) over a physical domain. It has been applied successfully to solve various problems in the field of structural analysis, electromagnetics, heat transfer, fluid flows, etc. However, the issue of improving FEM has been going on for the last 50 years. The objective of the study is to create an artificial neural network (ANN) model that can learn to predict the stiffness matrices of 2D finite elements, such as the 8-node quadrilateral element. The computational efficiency and accuracy of the finite elements generated through the ANN model are also checked with existing finite elements through some numerical examples. The results have been found to be consistent with available literature." @default.
- W4386004709 created "2023-08-20" @default.
- W4386004709 creator A5008932081 @default.
- W4386004709 creator A5030382956 @default.
- W4386004709 creator A5032699463 @default.
- W4386004709 date "2023-01-01" @default.
- W4386004709 modified "2023-10-12" @default.
- W4386004709 title "Design of Efficient Finite Elements Using Deep Learning Approach" @default.
- W4386004709 cites W2117591526 @default.
- W4386004709 cites W2753246113 @default.
- W4386004709 cites W2785071288 @default.
- W4386004709 cites W2899283552 @default.
- W4386004709 cites W2969434896 @default.
- W4386004709 cites W3000192721 @default.
- W4386004709 cites W3011714719 @default.
- W4386004709 cites W3048332795 @default.
- W4386004709 cites W3084276559 @default.
- W4386004709 cites W3101260193 @default.
- W4386004709 cites W3126242828 @default.
- W4386004709 cites W3215894900 @default.
- W4386004709 cites W4286438561 @default.
- W4386004709 doi "https://doi.org/10.1007/978-981-99-3033-3_2" @default.
- W4386004709 hasPublicationYear "2023" @default.
- W4386004709 type Work @default.
- W4386004709 citedByCount "0" @default.
- W4386004709 crossrefType "book-chapter" @default.
- W4386004709 hasAuthorship W4386004709A5008932081 @default.
- W4386004709 hasAuthorship W4386004709A5030382956 @default.
- W4386004709 hasAuthorship W4386004709A5032699463 @default.
- W4386004709 hasConcept C127413603 @default.
- W4386004709 hasConcept C134306372 @default.
- W4386004709 hasConcept C135628077 @default.
- W4386004709 hasConcept C144468803 @default.
- W4386004709 hasConcept C151756577 @default.
- W4386004709 hasConcept C154945302 @default.
- W4386004709 hasConcept C177605945 @default.
- W4386004709 hasConcept C24326235 @default.
- W4386004709 hasConcept C2779372316 @default.
- W4386004709 hasConcept C28826006 @default.
- W4386004709 hasConcept C2909720056 @default.
- W4386004709 hasConcept C33923547 @default.
- W4386004709 hasConcept C41008148 @default.
- W4386004709 hasConcept C459310 @default.
- W4386004709 hasConcept C50644808 @default.
- W4386004709 hasConcept C52890695 @default.
- W4386004709 hasConcept C63632240 @default.
- W4386004709 hasConcept C66938386 @default.
- W4386004709 hasConcept C93779851 @default.
- W4386004709 hasConceptScore W4386004709C127413603 @default.
- W4386004709 hasConceptScore W4386004709C134306372 @default.
- W4386004709 hasConceptScore W4386004709C135628077 @default.
- W4386004709 hasConceptScore W4386004709C144468803 @default.
- W4386004709 hasConceptScore W4386004709C151756577 @default.
- W4386004709 hasConceptScore W4386004709C154945302 @default.
- W4386004709 hasConceptScore W4386004709C177605945 @default.
- W4386004709 hasConceptScore W4386004709C24326235 @default.
- W4386004709 hasConceptScore W4386004709C2779372316 @default.
- W4386004709 hasConceptScore W4386004709C28826006 @default.
- W4386004709 hasConceptScore W4386004709C2909720056 @default.
- W4386004709 hasConceptScore W4386004709C33923547 @default.
- W4386004709 hasConceptScore W4386004709C41008148 @default.
- W4386004709 hasConceptScore W4386004709C459310 @default.
- W4386004709 hasConceptScore W4386004709C50644808 @default.
- W4386004709 hasConceptScore W4386004709C52890695 @default.
- W4386004709 hasConceptScore W4386004709C63632240 @default.
- W4386004709 hasConceptScore W4386004709C66938386 @default.
- W4386004709 hasConceptScore W4386004709C93779851 @default.
- W4386004709 hasLocation W43860047091 @default.
- W4386004709 hasOpenAccess W4386004709 @default.
- W4386004709 hasPrimaryLocation W43860047091 @default.
- W4386004709 hasRelatedWork W1567939749 @default.
- W4386004709 hasRelatedWork W1573186872 @default.
- W4386004709 hasRelatedWork W1977906733 @default.
- W4386004709 hasRelatedWork W2019335389 @default.
- W4386004709 hasRelatedWork W2027750554 @default.
- W4386004709 hasRelatedWork W2098051251 @default.
- W4386004709 hasRelatedWork W2134127411 @default.
- W4386004709 hasRelatedWork W2350239347 @default.
- W4386004709 hasRelatedWork W2367880982 @default.
- W4386004709 hasRelatedWork W3154256664 @default.
- W4386004709 isParatext "false" @default.
- W4386004709 isRetracted "false" @default.
- W4386004709 workType "book-chapter" @default.