Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386005413> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4386005413 endingPage "935" @default.
- W4386005413 startingPage "923" @default.
- W4386005413 abstract "Individuals spend a significant portion of their time on social media. It has become a platform for expression of feelings, sharing of ideas and connecting with other individuals using video and audio posts, textual data such as comments and descriptions and so on. Social media has a considerable impact on people’s daily life. In recent time, there is an enormous growth in number of people using Twitter and Instagram to share their emotions and sentiments which represents their actual feelings. In this work, we apply Machine Learning techniques on social media data to perform a comprehensive investigation to detect the risk of depression in people. Our work can help to detect various symptoms such sadness, loneliness, detachment etc. providing an insight for forensic analysts and law enforcement agencies about the person’s mental state. The experimental results show that Extra Tree Classifier performs significantly better over the other models in detecting the sentiment of people using social media data." @default.
- W4386005413 created "2023-08-20" @default.
- W4386005413 creator A5000467987 @default.
- W4386005413 creator A5044766283 @default.
- W4386005413 creator A5046167851 @default.
- W4386005413 creator A5080033381 @default.
- W4386005413 creator A5080538209 @default.
- W4386005413 creator A5092666255 @default.
- W4386005413 date "2023-01-01" @default.
- W4386005413 modified "2023-10-12" @default.
- W4386005413 title "AI-ML Analytics: A Comprehensive Investigation on Sentimental Analysis for Social Media Forensics Textual Data" @default.
- W4386005413 cites W1531503713 @default.
- W4386005413 cites W2056132907 @default.
- W4386005413 cites W2094652751 @default.
- W4386005413 cites W2129468158 @default.
- W4386005413 cites W2148143831 @default.
- W4386005413 cites W2155653793 @default.
- W4386005413 cites W2531271152 @default.
- W4386005413 cites W2804839060 @default.
- W4386005413 cites W2809356716 @default.
- W4386005413 cites W2889056793 @default.
- W4386005413 cites W2889097229 @default.
- W4386005413 cites W2910124189 @default.
- W4386005413 cites W2923528470 @default.
- W4386005413 cites W2995715396 @default.
- W4386005413 cites W3162632106 @default.
- W4386005413 cites W4213237586 @default.
- W4386005413 cites W4297924704 @default.
- W4386005413 doi "https://doi.org/10.1007/978-3-031-37963-5_64" @default.
- W4386005413 hasPublicationYear "2023" @default.
- W4386005413 type Work @default.
- W4386005413 citedByCount "0" @default.
- W4386005413 crossrefType "book-chapter" @default.
- W4386005413 hasAuthorship W4386005413A5000467987 @default.
- W4386005413 hasAuthorship W4386005413A5044766283 @default.
- W4386005413 hasAuthorship W4386005413A5046167851 @default.
- W4386005413 hasAuthorship W4386005413A5080033381 @default.
- W4386005413 hasAuthorship W4386005413A5080538209 @default.
- W4386005413 hasAuthorship W4386005413A5092666255 @default.
- W4386005413 hasConcept C108827166 @default.
- W4386005413 hasConcept C122980154 @default.
- W4386005413 hasConcept C136764020 @default.
- W4386005413 hasConcept C154945302 @default.
- W4386005413 hasConcept C15744967 @default.
- W4386005413 hasConcept C17744445 @default.
- W4386005413 hasConcept C199539241 @default.
- W4386005413 hasConcept C2522767166 @default.
- W4386005413 hasConcept C2779302386 @default.
- W4386005413 hasConcept C2779812673 @default.
- W4386005413 hasConcept C2779998236 @default.
- W4386005413 hasConcept C2780262971 @default.
- W4386005413 hasConcept C41008148 @default.
- W4386005413 hasConcept C518677369 @default.
- W4386005413 hasConcept C66402592 @default.
- W4386005413 hasConcept C77805123 @default.
- W4386005413 hasConcept C95623464 @default.
- W4386005413 hasConceptScore W4386005413C108827166 @default.
- W4386005413 hasConceptScore W4386005413C122980154 @default.
- W4386005413 hasConceptScore W4386005413C136764020 @default.
- W4386005413 hasConceptScore W4386005413C154945302 @default.
- W4386005413 hasConceptScore W4386005413C15744967 @default.
- W4386005413 hasConceptScore W4386005413C17744445 @default.
- W4386005413 hasConceptScore W4386005413C199539241 @default.
- W4386005413 hasConceptScore W4386005413C2522767166 @default.
- W4386005413 hasConceptScore W4386005413C2779302386 @default.
- W4386005413 hasConceptScore W4386005413C2779812673 @default.
- W4386005413 hasConceptScore W4386005413C2779998236 @default.
- W4386005413 hasConceptScore W4386005413C2780262971 @default.
- W4386005413 hasConceptScore W4386005413C41008148 @default.
- W4386005413 hasConceptScore W4386005413C518677369 @default.
- W4386005413 hasConceptScore W4386005413C66402592 @default.
- W4386005413 hasConceptScore W4386005413C77805123 @default.
- W4386005413 hasConceptScore W4386005413C95623464 @default.
- W4386005413 hasLocation W43860054131 @default.
- W4386005413 hasOpenAccess W4386005413 @default.
- W4386005413 hasPrimaryLocation W43860054131 @default.
- W4386005413 hasRelatedWork W2120267809 @default.
- W4386005413 hasRelatedWork W2141620662 @default.
- W4386005413 hasRelatedWork W2308413298 @default.
- W4386005413 hasRelatedWork W2317255260 @default.
- W4386005413 hasRelatedWork W2373147122 @default.
- W4386005413 hasRelatedWork W2902116245 @default.
- W4386005413 hasRelatedWork W2913307771 @default.
- W4386005413 hasRelatedWork W4311605484 @default.
- W4386005413 hasRelatedWork W4312102834 @default.
- W4386005413 hasRelatedWork W4382699229 @default.
- W4386005413 isParatext "false" @default.
- W4386005413 isRetracted "false" @default.
- W4386005413 workType "book-chapter" @default.