Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386008077> ?p ?o ?g. }
- W4386008077 abstract "Introduction Closed-circuit video (CCTV) inspection has been the most popular technique for visually evaluating the interior status of pipelines in recent decades. Certified inspectors prepare the pipe repair document based on the CCTV inspection. The traditional manual method of assessing structural wastewater conditions from pipe repair documents takes a long time and is prone to human mistakes. The automatic identification of necessary texts has received little attention. Computer Vision based Machine Learning models failed to estimate structural damage because they are not entirely understood and have difficulty providing high data needs. Hence, they have problems providing physically consistent findings due to their high data needs. Currently, a very small curated annotated image and video data set with well-defined, precisely labeled categories to test Computer Vision based Machine Learning models. Methods This study provides a valuable method to determine the pipe defect rating of the pipe repair documents by developing an automated framework using Natural Language Processing (NLP) on very small, curated annotated images, video data, and more text data. The text used in this study is broken into grammatical units using NLP technologies. The next step in the analysis entails using words to find the frequency of pipe defects and then classify them into respective defect ratings for pipe maintenance. Results and discussions The proposed model achieved 95.0% accuracy, 94.9% recall, 95% specificity, 95.9% precision score, and 95.7% F1 score, showing the potential of the proposed model to be used in large-scale pipe repair documents for accurate and efficient pipeline failure detection to improve the quality of the pipeline." @default.
- W4386008077 created "2023-08-20" @default.
- W4386008077 creator A5003346134 @default.
- W4386008077 creator A5012071023 @default.
- W4386008077 creator A5022376847 @default.
- W4386008077 creator A5045774308 @default.
- W4386008077 date "2023-08-17" @default.
- W4386008077 modified "2023-10-14" @default.
- W4386008077 title "Wastewater pipe defect rating model for pipe maintenance using natural language processing" @default.
- W4386008077 cites W1996430422 @default.
- W4386008077 cites W1997738271 @default.
- W4386008077 cites W2017820014 @default.
- W4386008077 cites W2024932032 @default.
- W4386008077 cites W2028140375 @default.
- W4386008077 cites W2029543140 @default.
- W4386008077 cites W2054644187 @default.
- W4386008077 cites W2089870669 @default.
- W4386008077 cites W2143612262 @default.
- W4386008077 cites W2150874198 @default.
- W4386008077 cites W2160660844 @default.
- W4386008077 cites W2462693528 @default.
- W4386008077 cites W2548476003 @default.
- W4386008077 cites W2748917130 @default.
- W4386008077 cites W2794520931 @default.
- W4386008077 cites W2795340004 @default.
- W4386008077 cites W2889035772 @default.
- W4386008077 cites W2913697492 @default.
- W4386008077 cites W2924114537 @default.
- W4386008077 cites W2926691444 @default.
- W4386008077 cites W2953888523 @default.
- W4386008077 cites W2978147300 @default.
- W4386008077 cites W2982168448 @default.
- W4386008077 cites W2999010889 @default.
- W4386008077 cites W3017475358 @default.
- W4386008077 cites W3035491673 @default.
- W4386008077 cites W3089864048 @default.
- W4386008077 cites W3137537801 @default.
- W4386008077 cites W3185153871 @default.
- W4386008077 cites W3195600920 @default.
- W4386008077 cites W3199541934 @default.
- W4386008077 cites W3207919916 @default.
- W4386008077 cites W4210609591 @default.
- W4386008077 cites W4242159984 @default.
- W4386008077 cites W4292220009 @default.
- W4386008077 cites W4293060638 @default.
- W4386008077 cites W4313419055 @default.
- W4386008077 cites W4313498491 @default.
- W4386008077 doi "https://doi.org/10.3389/frwa.2023.1123313" @default.
- W4386008077 hasPublicationYear "2023" @default.
- W4386008077 type Work @default.
- W4386008077 citedByCount "0" @default.
- W4386008077 crossrefType "journal-article" @default.
- W4386008077 hasAuthorship W4386008077A5003346134 @default.
- W4386008077 hasAuthorship W4386008077A5012071023 @default.
- W4386008077 hasAuthorship W4386008077A5022376847 @default.
- W4386008077 hasAuthorship W4386008077A5045774308 @default.
- W4386008077 hasBestOaLocation W43860080771 @default.
- W4386008077 hasConcept C115903868 @default.
- W4386008077 hasConcept C116834253 @default.
- W4386008077 hasConcept C119857082 @default.
- W4386008077 hasConcept C148524875 @default.
- W4386008077 hasConcept C154945302 @default.
- W4386008077 hasConcept C16910744 @default.
- W4386008077 hasConcept C177264268 @default.
- W4386008077 hasConcept C17744445 @default.
- W4386008077 hasConcept C199360897 @default.
- W4386008077 hasConcept C199539241 @default.
- W4386008077 hasConcept C204321447 @default.
- W4386008077 hasConcept C41008148 @default.
- W4386008077 hasConcept C46304622 @default.
- W4386008077 hasConcept C59822182 @default.
- W4386008077 hasConcept C81669768 @default.
- W4386008077 hasConcept C86803240 @default.
- W4386008077 hasConceptScore W4386008077C115903868 @default.
- W4386008077 hasConceptScore W4386008077C116834253 @default.
- W4386008077 hasConceptScore W4386008077C119857082 @default.
- W4386008077 hasConceptScore W4386008077C148524875 @default.
- W4386008077 hasConceptScore W4386008077C154945302 @default.
- W4386008077 hasConceptScore W4386008077C16910744 @default.
- W4386008077 hasConceptScore W4386008077C177264268 @default.
- W4386008077 hasConceptScore W4386008077C17744445 @default.
- W4386008077 hasConceptScore W4386008077C199360897 @default.
- W4386008077 hasConceptScore W4386008077C199539241 @default.
- W4386008077 hasConceptScore W4386008077C204321447 @default.
- W4386008077 hasConceptScore W4386008077C41008148 @default.
- W4386008077 hasConceptScore W4386008077C46304622 @default.
- W4386008077 hasConceptScore W4386008077C59822182 @default.
- W4386008077 hasConceptScore W4386008077C81669768 @default.
- W4386008077 hasConceptScore W4386008077C86803240 @default.
- W4386008077 hasLocation W43860080771 @default.
- W4386008077 hasOpenAccess W4386008077 @default.
- W4386008077 hasPrimaryLocation W43860080771 @default.
- W4386008077 hasRelatedWork W3200170908 @default.
- W4386008077 hasRelatedWork W3212239346 @default.
- W4386008077 hasRelatedWork W4224262160 @default.
- W4386008077 hasRelatedWork W4293205612 @default.
- W4386008077 hasRelatedWork W4297839701 @default.
- W4386008077 hasRelatedWork W4352976590 @default.
- W4386008077 hasRelatedWork W4385349203 @default.
- W4386008077 hasRelatedWork W4385625287 @default.