Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386008083> ?p ?o ?g. }
- W4386008083 endingPage "740003" @default.
- W4386008083 startingPage "740003" @default.
- W4386008083 abstract "The aim of this study was to investigate the energy sources and utilization patterns during embryonic development of Chinese sturgeon through analyzing the biochemical components of embryos at different development stages, and to explore the physiological characteristics and related molecular mechanism during embryogenesis in combination with an embryonic transcriptome analysis. Chinese sturgeon embryo samples were collected at different development stages (fertilized eggs, neurula stage, and tail touching head stage). The results showed that embryonic development was a process of continuous energy consumption. The change of total protein content was consistent with total amino acid content, showing a trend of increasing first and then decreasing. However, the total lipid content decreased significantly during early embryonic development. As for amino acid profile, leucine, arginine and lysine contents showed the highest level within essential amino acids (EAA), while glutamic acid, alanine, aspartic acid and serine contents showed the highest level within non-essential amino acids (NEAA). In terms of fatty acid content, the main quantitative fatty acids were C16:0 in saturated fatty acids (SFA), C18:1 in monounsaturated fatty acids (MUFA), and C22:6n-3 (DHA), C18:2n-6 as well as C20:5n-3 (EPA) in polyunsaturated fatty acids (PUFA). The content of C20:4n-6 (ARA), EPA and DHA were increased at neurula stage compared to fertilized eggs, which indicated their important roles in the structural composition during embryogenesis. Notably, Chinese sturgeon may have the ability to elongate n-3 PUFA to partially meet its requirements for highly unsaturated fatty acids (HUFA) during embryonic development. Transcriptome analysis showed that 19,078 and 6326 differential expressed genes (DEGs) were up-regulated and down-regulated respectively from fertilized eggs to neurula stage; while 3556 and 3150 DEGs were up-regulated and down-regulated respectively from neurula stage to tail touching head stage. KEGG enrichment analysis showed that the protein processing pathway was significantly enriched in early embryonic development through the up-regulated genes of imp4, pwp2, utp21, nop10, rpl10_17_35 and rps25; while the down-regulated genes of ccne1, ccna2, ccnb1, cdk1_2 and plk1 were associated with cell proliferation and differentiation pathway. In late embryonic development, the pathways related to aerobic metabolism, amino acid metabolism and lipid metabolism were significantly enriched through the up-regulated genes of mdh1, fumc, idh2, elovl6 and dgat2; and the neuroactive ligand-receptor interaction pathway was significantly down-regulated. In general, this study revealed the continuous energy consumption during embryonic development of Chinese sturgeon with specific energy substrates at different stages, and highlighted the DEGs and related pathway involved in the ontogeny and nutrient metabolism, which emphasizes the essentiality of high quality egg production for the success of captive breeding of Chinese sturgeon and would guide the broodstock nutrition for high quality egg production." @default.
- W4386008083 created "2023-08-20" @default.
- W4386008083 creator A5000022223 @default.
- W4386008083 creator A5016256046 @default.
- W4386008083 creator A5027648817 @default.
- W4386008083 creator A5042679842 @default.
- W4386008083 creator A5051768462 @default.
- W4386008083 creator A5072378272 @default.
- W4386008083 creator A5074140059 @default.
- W4386008083 date "2023-12-01" @default.
- W4386008083 modified "2023-10-07" @default.
- W4386008083 title "Biochemical compositions and transcriptome analysis reveal dynamic changes of embryonic development and nutrition metabolism in Chinese sturgeon (Acipenser sinensis)" @default.
- W4386008083 cites W138334596 @default.
- W4386008083 cites W1489300924 @default.
- W4386008083 cites W1964175260 @default.
- W4386008083 cites W1964643951 @default.
- W4386008083 cites W1974501719 @default.
- W4386008083 cites W1988192804 @default.
- W4386008083 cites W1994957454 @default.
- W4386008083 cites W1998740976 @default.
- W4386008083 cites W2000448873 @default.
- W4386008083 cites W2004214896 @default.
- W4386008083 cites W2005805835 @default.
- W4386008083 cites W2022945843 @default.
- W4386008083 cites W2033336824 @default.
- W4386008083 cites W2039908503 @default.
- W4386008083 cites W2041168550 @default.
- W4386008083 cites W2041573061 @default.
- W4386008083 cites W2047608271 @default.
- W4386008083 cites W2054576008 @default.
- W4386008083 cites W2055434332 @default.
- W4386008083 cites W2060191311 @default.
- W4386008083 cites W2063673863 @default.
- W4386008083 cites W2065350988 @default.
- W4386008083 cites W2071278881 @default.
- W4386008083 cites W2071344941 @default.
- W4386008083 cites W2073771181 @default.
- W4386008083 cites W2079493297 @default.
- W4386008083 cites W2085427312 @default.
- W4386008083 cites W2087472570 @default.
- W4386008083 cites W2087555216 @default.
- W4386008083 cites W2089441149 @default.
- W4386008083 cites W2089939585 @default.
- W4386008083 cites W2091838393 @default.
- W4386008083 cites W2102547536 @default.
- W4386008083 cites W2107277218 @default.
- W4386008083 cites W2120256704 @default.
- W4386008083 cites W2146428402 @default.
- W4386008083 cites W2147688002 @default.
- W4386008083 cites W2152311269 @default.
- W4386008083 cites W2153751517 @default.
- W4386008083 cites W2158079411 @default.
- W4386008083 cites W2172163368 @default.
- W4386008083 cites W2194185011 @default.
- W4386008083 cites W2463612007 @default.
- W4386008083 cites W2590102585 @default.
- W4386008083 cites W2625401734 @default.
- W4386008083 cites W2741188536 @default.
- W4386008083 cites W2790248509 @default.
- W4386008083 cites W2886614056 @default.
- W4386008083 cites W2898920420 @default.
- W4386008083 cites W3107951481 @default.
- W4386008083 cites W3119016645 @default.
- W4386008083 cites W3194354041 @default.
- W4386008083 cites W4281263717 @default.
- W4386008083 cites W78757802 @default.
- W4386008083 doi "https://doi.org/10.1016/j.aquaculture.2023.740003" @default.
- W4386008083 hasPublicationYear "2023" @default.
- W4386008083 type Work @default.
- W4386008083 citedByCount "0" @default.
- W4386008083 crossrefType "journal-article" @default.
- W4386008083 hasAuthorship W4386008083A5000022223 @default.
- W4386008083 hasAuthorship W4386008083A5016256046 @default.
- W4386008083 hasAuthorship W4386008083A5027648817 @default.
- W4386008083 hasAuthorship W4386008083A5042679842 @default.
- W4386008083 hasAuthorship W4386008083A5051768462 @default.
- W4386008083 hasAuthorship W4386008083A5072378272 @default.
- W4386008083 hasAuthorship W4386008083A5074140059 @default.
- W4386008083 hasConcept C104317684 @default.
- W4386008083 hasConcept C129536746 @default.
- W4386008083 hasConcept C150194340 @default.
- W4386008083 hasConcept C162317418 @default.
- W4386008083 hasConcept C19038510 @default.
- W4386008083 hasConcept C2777784394 @default.
- W4386008083 hasConcept C2909208804 @default.
- W4386008083 hasConcept C31903555 @default.
- W4386008083 hasConcept C41623484 @default.
- W4386008083 hasConcept C505870484 @default.
- W4386008083 hasConcept C515207424 @default.
- W4386008083 hasConcept C543025807 @default.
- W4386008083 hasConcept C55493867 @default.
- W4386008083 hasConcept C86803240 @default.
- W4386008083 hasConcept C87073359 @default.
- W4386008083 hasConceptScore W4386008083C104317684 @default.
- W4386008083 hasConceptScore W4386008083C129536746 @default.
- W4386008083 hasConceptScore W4386008083C150194340 @default.
- W4386008083 hasConceptScore W4386008083C162317418 @default.
- W4386008083 hasConceptScore W4386008083C19038510 @default.