Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386008140> ?p ?o ?g. }
- W4386008140 abstract "Abstract Due to the complicated histopathological characteristics of clear-cell renal-cell carcinoma (ccRCC), non-invasive prognosis before operative treatment is crucial in selecting the appropriate treatment. A total of 126 345 computerized tomography (CT) images from four independent patient cohorts were included for analysis in this study. We propose a V Bottleneck multi-resolution and focus-organ network (VB-MrFo-Net) using a cascade framework for deep learning analysis. The VB-MrFo-Net achieved better performance than VB-Net in tumor segmentation, with a Dice score of 0.87. The nuclear-grade prediction model performed best in the logistic regression classifier, with area under curve values from 0.782 to 0.746. Survival analysis revealed that our prediction model could significantly distinguish patients with high survival risk, with a hazard ratio (HR) of 2.49 [95% confidence interval (CI): 1.13–5.45, P = 0.023] in the General cohort. Excellent performance had also been verified in the Cancer Genome Atlas cohort, the Clinical Proteomic Tumor Analysis Consortium cohort, and the Kidney Tumor Segmentation Challenge cohort, with HRs of 2.77 (95%CI: 1.58–4.84, P = 0.0019), 3.83 (95%CI: 1.22–11.96, P = 0.029), and 2.80 (95%CI: 1.05–7.47, P = 0.025), respectively. In conclusion, we propose a novel VB-MrFo-Net for the renal tumor segmentation and automatic diagnosis of ccRCC. The risk stratification model could accurately distinguish patients with high tumor grade and high survival risk based on non-invasive CT images before surgical treatments, which could provide practical advice for deciding treatment options." @default.
- W4386008140 created "2023-08-20" @default.
- W4386008140 creator A5007236996 @default.
- W4386008140 creator A5010729427 @default.
- W4386008140 creator A5010738468 @default.
- W4386008140 creator A5016173245 @default.
- W4386008140 creator A5019115888 @default.
- W4386008140 creator A5029538393 @default.
- W4386008140 creator A5034255213 @default.
- W4386008140 creator A5037434300 @default.
- W4386008140 creator A5044936528 @default.
- W4386008140 creator A5054343896 @default.
- W4386008140 creator A5054418515 @default.
- W4386008140 creator A5058449981 @default.
- W4386008140 creator A5061772307 @default.
- W4386008140 creator A5079974007 @default.
- W4386008140 date "2023-07-14" @default.
- W4386008140 modified "2023-10-17" @default.
- W4386008140 title "Artificial intelligence-based non-invasive tumor segmentation, grade stratification and prognosis prediction for clear-cell renal-cell carcinoma" @default.
- W4386008140 cites W2023359955 @default.
- W4386008140 cites W2083927153 @default.
- W4386008140 cites W2126998212 @default.
- W4386008140 cites W2127890285 @default.
- W4386008140 cites W2164317031 @default.
- W4386008140 cites W2301685087 @default.
- W4386008140 cites W2524688517 @default.
- W4386008140 cites W2557738935 @default.
- W4386008140 cites W2801894005 @default.
- W4386008140 cites W2885326465 @default.
- W4386008140 cites W2891000805 @default.
- W4386008140 cites W2917694231 @default.
- W4386008140 cites W2919115771 @default.
- W4386008140 cites W2922043809 @default.
- W4386008140 cites W2940487144 @default.
- W4386008140 cites W2946760001 @default.
- W4386008140 cites W2962914239 @default.
- W4386008140 cites W2982402173 @default.
- W4386008140 cites W2985583390 @default.
- W4386008140 cites W3000125976 @default.
- W4386008140 cites W3003971151 @default.
- W4386008140 cites W3010519118 @default.
- W4386008140 cites W3022494500 @default.
- W4386008140 cites W3090605478 @default.
- W4386008140 cites W3119005666 @default.
- W4386008140 cites W3119856975 @default.
- W4386008140 cites W3125402839 @default.
- W4386008140 cites W3135547872 @default.
- W4386008140 cites W3139326336 @default.
- W4386008140 cites W4309562050 @default.
- W4386008140 doi "https://doi.org/10.1093/pcmedi/pbad019" @default.
- W4386008140 hasPublicationYear "2023" @default.
- W4386008140 type Work @default.
- W4386008140 citedByCount "0" @default.
- W4386008140 crossrefType "journal-article" @default.
- W4386008140 hasAuthorship W4386008140A5007236996 @default.
- W4386008140 hasAuthorship W4386008140A5010729427 @default.
- W4386008140 hasAuthorship W4386008140A5010738468 @default.
- W4386008140 hasAuthorship W4386008140A5016173245 @default.
- W4386008140 hasAuthorship W4386008140A5019115888 @default.
- W4386008140 hasAuthorship W4386008140A5029538393 @default.
- W4386008140 hasAuthorship W4386008140A5034255213 @default.
- W4386008140 hasAuthorship W4386008140A5037434300 @default.
- W4386008140 hasAuthorship W4386008140A5044936528 @default.
- W4386008140 hasAuthorship W4386008140A5054343896 @default.
- W4386008140 hasAuthorship W4386008140A5054418515 @default.
- W4386008140 hasAuthorship W4386008140A5058449981 @default.
- W4386008140 hasAuthorship W4386008140A5061772307 @default.
- W4386008140 hasAuthorship W4386008140A5079974007 @default.
- W4386008140 hasBestOaLocation W43860081401 @default.
- W4386008140 hasConcept C126322002 @default.
- W4386008140 hasConcept C126838900 @default.
- W4386008140 hasConcept C143998085 @default.
- W4386008140 hasConcept C154945302 @default.
- W4386008140 hasConcept C207103383 @default.
- W4386008140 hasConcept C2777472916 @default.
- W4386008140 hasConcept C2781068499 @default.
- W4386008140 hasConcept C2781278892 @default.
- W4386008140 hasConcept C41008148 @default.
- W4386008140 hasConcept C44249647 @default.
- W4386008140 hasConcept C71924100 @default.
- W4386008140 hasConcept C72563966 @default.
- W4386008140 hasConcept C89600930 @default.
- W4386008140 hasConceptScore W4386008140C126322002 @default.
- W4386008140 hasConceptScore W4386008140C126838900 @default.
- W4386008140 hasConceptScore W4386008140C143998085 @default.
- W4386008140 hasConceptScore W4386008140C154945302 @default.
- W4386008140 hasConceptScore W4386008140C207103383 @default.
- W4386008140 hasConceptScore W4386008140C2777472916 @default.
- W4386008140 hasConceptScore W4386008140C2781068499 @default.
- W4386008140 hasConceptScore W4386008140C2781278892 @default.
- W4386008140 hasConceptScore W4386008140C41008148 @default.
- W4386008140 hasConceptScore W4386008140C44249647 @default.
- W4386008140 hasConceptScore W4386008140C71924100 @default.
- W4386008140 hasConceptScore W4386008140C72563966 @default.
- W4386008140 hasConceptScore W4386008140C89600930 @default.
- W4386008140 hasFunder F4320321001 @default.
- W4386008140 hasFunder F4320337351 @default.
- W4386008140 hasIssue "3" @default.
- W4386008140 hasLocation W43860081401 @default.
- W4386008140 hasOpenAccess W4386008140 @default.