Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386008217> ?p ?o ?g. }
- W4386008217 endingPage "105351" @default.
- W4386008217 startingPage "105351" @default.
- W4386008217 abstract "Sleep staging via electroencephalogram is essential for determining the quality of sleep. Manual sleep staging is expensive and time-consuming. Recently, many deep learning-based sleep staging methods are demonstrated to outperform traditional methods. However, most methods do not fully exploit the temporal correlation between features of electroencephalogram signals. In this paper, we propose a self-attention routing-based capsule network with bi-directional long short-term memory model to extract more discriminative features from electroencephalogram signals and improve the accuracy of sleep staging. First, a convolutional neural network is used to extract salient features from the electroencephalogram signal. Second, to learn the transition rules between different sleep epochs, a bi-directional long short-term memory is used to capture the temporal dependence between the encoded electroencephalogram signals. Finally, to fully explore the temporal correlation between the features from the electroencephalogram signals, a self-attention routing-based capsule network is utilized to recode the importance based on the intrinsic temporal similarity of electroencephalogram signals. We evaluated our model by two different single-channel electroencephalogram signals (i.e., Fpz-Cz and Pz-Oz electroencephalogram channels) from two public sleep datasets, named Sleep-EDF-39 and Sleep-EDF-153. Our overall accuracies on the Sleep-EDF-39 and Sleep-EDF-153 datasets are 85.8% and 83.4%, with a kappa of 0.8 and 0.77, respectively. The results show that our proposed method achieves the state-of-the-art level of sleep staging using a single-channel electroencephalogram and offers the possibility of widespread application of capsule networks for sleep staging." @default.
- W4386008217 created "2023-08-20" @default.
- W4386008217 creator A5003655161 @default.
- W4386008217 creator A5031988048 @default.
- W4386008217 creator A5054461737 @default.
- W4386008217 creator A5058595102 @default.
- W4386008217 creator A5069334991 @default.
- W4386008217 date "2023-09-01" @default.
- W4386008217 modified "2023-10-15" @default.
- W4386008217 title "EEG-based sleep staging via self-attention based capsule network with Bi-LSTM model" @default.
- W4386008217 cites W192421903 @default.
- W4386008217 cites W1963756232 @default.
- W4386008217 cites W1964022961 @default.
- W4386008217 cites W2125118901 @default.
- W4386008217 cites W2162800060 @default.
- W4386008217 cites W2163462953 @default.
- W4386008217 cites W244799260 @default.
- W4386008217 cites W2604096629 @default.
- W4386008217 cites W2771006757 @default.
- W4386008217 cites W2790486743 @default.
- W4386008217 cites W2793841943 @default.
- W4386008217 cites W2794284562 @default.
- W4386008217 cites W2805033630 @default.
- W4386008217 cites W2884367402 @default.
- W4386008217 cites W2893892260 @default.
- W4386008217 cites W2908603469 @default.
- W4386008217 cites W2920016582 @default.
- W4386008217 cites W2950301853 @default.
- W4386008217 cites W3009259306 @default.
- W4386008217 cites W3019166713 @default.
- W4386008217 cites W3040939498 @default.
- W4386008217 cites W3087740611 @default.
- W4386008217 cites W3124675547 @default.
- W4386008217 cites W3143029809 @default.
- W4386008217 cites W3144491363 @default.
- W4386008217 cites W3148072096 @default.
- W4386008217 cites W3158818505 @default.
- W4386008217 cites W3159541278 @default.
- W4386008217 cites W3165396901 @default.
- W4386008217 cites W3182909984 @default.
- W4386008217 cites W3186928351 @default.
- W4386008217 cites W3205486398 @default.
- W4386008217 cites W3217299532 @default.
- W4386008217 cites W4220891962 @default.
- W4386008217 cites W4223627919 @default.
- W4386008217 doi "https://doi.org/10.1016/j.bspc.2023.105351" @default.
- W4386008217 hasPublicationYear "2023" @default.
- W4386008217 type Work @default.
- W4386008217 citedByCount "0" @default.
- W4386008217 crossrefType "journal-article" @default.
- W4386008217 hasAuthorship W4386008217A5003655161 @default.
- W4386008217 hasAuthorship W4386008217A5031988048 @default.
- W4386008217 hasAuthorship W4386008217A5054461737 @default.
- W4386008217 hasAuthorship W4386008217A5058595102 @default.
- W4386008217 hasAuthorship W4386008217A5069334991 @default.
- W4386008217 hasConcept C111919701 @default.
- W4386008217 hasConcept C153180895 @default.
- W4386008217 hasConcept C154945302 @default.
- W4386008217 hasConcept C15744967 @default.
- W4386008217 hasConcept C169760540 @default.
- W4386008217 hasConcept C2775841894 @default.
- W4386008217 hasConcept C2778205975 @default.
- W4386008217 hasConcept C28490314 @default.
- W4386008217 hasConcept C2910364982 @default.
- W4386008217 hasConcept C41008148 @default.
- W4386008217 hasConcept C522805319 @default.
- W4386008217 hasConcept C81363708 @default.
- W4386008217 hasConcept C97931131 @default.
- W4386008217 hasConceptScore W4386008217C111919701 @default.
- W4386008217 hasConceptScore W4386008217C153180895 @default.
- W4386008217 hasConceptScore W4386008217C154945302 @default.
- W4386008217 hasConceptScore W4386008217C15744967 @default.
- W4386008217 hasConceptScore W4386008217C169760540 @default.
- W4386008217 hasConceptScore W4386008217C2775841894 @default.
- W4386008217 hasConceptScore W4386008217C2778205975 @default.
- W4386008217 hasConceptScore W4386008217C28490314 @default.
- W4386008217 hasConceptScore W4386008217C2910364982 @default.
- W4386008217 hasConceptScore W4386008217C41008148 @default.
- W4386008217 hasConceptScore W4386008217C522805319 @default.
- W4386008217 hasConceptScore W4386008217C81363708 @default.
- W4386008217 hasConceptScore W4386008217C97931131 @default.
- W4386008217 hasFunder F4320321001 @default.
- W4386008217 hasFunder F4320335787 @default.
- W4386008217 hasLocation W43860082171 @default.
- W4386008217 hasOpenAccess W4386008217 @default.
- W4386008217 hasPrimaryLocation W43860082171 @default.
- W4386008217 hasRelatedWork W2024160000 @default.
- W4386008217 hasRelatedWork W2061273563 @default.
- W4386008217 hasRelatedWork W2285052147 @default.
- W4386008217 hasRelatedWork W2729514902 @default.
- W4386008217 hasRelatedWork W2743258233 @default.
- W4386008217 hasRelatedWork W2765253274 @default.
- W4386008217 hasRelatedWork W2773500201 @default.
- W4386008217 hasRelatedWork W2998168123 @default.
- W4386008217 hasRelatedWork W4287995534 @default.
- W4386008217 hasRelatedWork W4319301798 @default.
- W4386008217 hasVolume "86" @default.
- W4386008217 isParatext "false" @default.