Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386008226> ?p ?o ?g. }
- W4386008226 endingPage "105738" @default.
- W4386008226 startingPage "105738" @default.
- W4386008226 abstract "Efficient determination of the rock mass properties is vitally important for calculating and evaluating tunnel stability in tunnel engineering. The back analysis method has been widely used as an indirect method for determining rock mass parameters based on field measurements. However, most back analysis methods are generally time-consuming for numerical simulation and are merely based on the measured displacement, which leads to the identification of rock mass parameters that cannot fully reflect the characteristics of the surrounding rock. To improve the accuracy of the estimation of rock mass parameters, this paper presents a back analysis method based on multi-output support vector regression (MSVR) and differential evolution (DE) algorithms. Firstly, the global sensitivity analysis of rock mass parameters is analyzed using the elementary effects method. Numerical simulation is then carried out to prepare training samples. DE algorithm is used to determine the optimum hyperparameters of MSVR. Based on the monitoring data, the rock mass properties of the selected sensitive parameters are estimated by the constructed MSVR model. A high-speed railway tunnel is utilized to demonstrate the effectiveness of the MSVR with the DE algorithm (DE-MSVR). The results show that the DE-MSVR with mixed monitoring data of vault settlement, convergence, and rock mass stress has higher forecasting performance than these models with a single type of monitoring data. It is feasible to use the monitoring data at the early stages combined with the numerical simulation for parameter back analysis. Moreover, the comparison results show that the presented method exhibits higher prediction accuracy than the existing back analysis models." @default.
- W4386008226 created "2023-08-20" @default.
- W4386008226 creator A5014125206 @default.
- W4386008226 creator A5068724396 @default.
- W4386008226 creator A5087549892 @default.
- W4386008226 date "2023-11-01" @default.
- W4386008226 modified "2023-09-24" @default.
- W4386008226 title "Back analysis of rock mass parameters in tunnel engineering using machine learning techniques" @default.
- W4386008226 cites W1490180010 @default.
- W4386008226 cites W1595159159 @default.
- W4386008226 cites W1983766926 @default.
- W4386008226 cites W1992781824 @default.
- W4386008226 cites W2011688615 @default.
- W4386008226 cites W2013421593 @default.
- W4386008226 cites W2014181466 @default.
- W4386008226 cites W2036731840 @default.
- W4386008226 cites W2044482305 @default.
- W4386008226 cites W2063649321 @default.
- W4386008226 cites W2067688816 @default.
- W4386008226 cites W2080944325 @default.
- W4386008226 cites W2097334502 @default.
- W4386008226 cites W2105293964 @default.
- W4386008226 cites W2108685012 @default.
- W4386008226 cites W2138261175 @default.
- W4386008226 cites W2141755357 @default.
- W4386008226 cites W2162421262 @default.
- W4386008226 cites W2223659991 @default.
- W4386008226 cites W2314679671 @default.
- W4386008226 cites W2466751718 @default.
- W4386008226 cites W2513762707 @default.
- W4386008226 cites W2609249373 @default.
- W4386008226 cites W2761388352 @default.
- W4386008226 cites W2766276645 @default.
- W4386008226 cites W2788859094 @default.
- W4386008226 cites W2794219719 @default.
- W4386008226 cites W2803388580 @default.
- W4386008226 cites W2899275326 @default.
- W4386008226 cites W2973355919 @default.
- W4386008226 cites W2973917713 @default.
- W4386008226 cites W2974980133 @default.
- W4386008226 cites W2981571957 @default.
- W4386008226 cites W2989305098 @default.
- W4386008226 cites W2989559400 @default.
- W4386008226 cites W2990574233 @default.
- W4386008226 cites W3000454781 @default.
- W4386008226 cites W3025202834 @default.
- W4386008226 cites W3027998989 @default.
- W4386008226 cites W3044148892 @default.
- W4386008226 cites W3044913503 @default.
- W4386008226 cites W3115829768 @default.
- W4386008226 cites W3174638476 @default.
- W4386008226 cites W3185288064 @default.
- W4386008226 cites W3216348742 @default.
- W4386008226 cites W4200187497 @default.
- W4386008226 cites W4205330960 @default.
- W4386008226 cites W4206425130 @default.
- W4386008226 cites W4288691009 @default.
- W4386008226 cites W4304203320 @default.
- W4386008226 cites W4376880182 @default.
- W4386008226 cites W999207820 @default.
- W4386008226 doi "https://doi.org/10.1016/j.compgeo.2023.105738" @default.
- W4386008226 hasPublicationYear "2023" @default.
- W4386008226 type Work @default.
- W4386008226 citedByCount "0" @default.
- W4386008226 crossrefType "journal-article" @default.
- W4386008226 hasAuthorship W4386008226A5014125206 @default.
- W4386008226 hasAuthorship W4386008226A5068724396 @default.
- W4386008226 hasAuthorship W4386008226A5087549892 @default.
- W4386008226 hasConcept C107551265 @default.
- W4386008226 hasConcept C112972136 @default.
- W4386008226 hasConcept C11413529 @default.
- W4386008226 hasConcept C119857082 @default.
- W4386008226 hasConcept C12267149 @default.
- W4386008226 hasConcept C127313418 @default.
- W4386008226 hasConcept C127413603 @default.
- W4386008226 hasConcept C134306372 @default.
- W4386008226 hasConcept C136764020 @default.
- W4386008226 hasConcept C145097563 @default.
- W4386008226 hasConcept C15744967 @default.
- W4386008226 hasConcept C162324750 @default.
- W4386008226 hasConcept C187320778 @default.
- W4386008226 hasConcept C21200559 @default.
- W4386008226 hasConcept C24326235 @default.
- W4386008226 hasConcept C2777063073 @default.
- W4386008226 hasConcept C2777303404 @default.
- W4386008226 hasConcept C33923547 @default.
- W4386008226 hasConcept C41008148 @default.
- W4386008226 hasConcept C41242791 @default.
- W4386008226 hasConcept C44154836 @default.
- W4386008226 hasConcept C48753275 @default.
- W4386008226 hasConcept C500300565 @default.
- W4386008226 hasConcept C50522688 @default.
- W4386008226 hasConcept C542102704 @default.
- W4386008226 hasConcept C8642999 @default.
- W4386008226 hasConceptScore W4386008226C107551265 @default.
- W4386008226 hasConceptScore W4386008226C112972136 @default.
- W4386008226 hasConceptScore W4386008226C11413529 @default.
- W4386008226 hasConceptScore W4386008226C119857082 @default.