Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386011189> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W4386011189 abstract "<strong class=journal-contentHeaderColor>Abstract.</strong> Snow Water Equivalent (SWE) is a key variable in climate and hydrology studies. Current SWE products mask out high topography areas due to the coarse resolution of the satellite sensors used. The snow remote sensing community is hence pushing towards active microwaves approaches for global SWE monitoring. However, designing a SWE retrieval algorithm is not trivial, as multiple combinations of snow microstructure representations and SWE can yield the same radar signal. The community is converging towards forward modeling approaches using an educated first guess on the snowpack structure. Yet, snow highly varies in space and time, especially in mountain environments where the complex topography affects atmospheric and snowpack state variables in numerous ways. Automatic Weather Stations (AWS) are too sparse, and high-resolution Numerical Weather Predictions systems have a maximal resolution of 2.5 km × 2.5 km, which is too coarse to capture snow spatial variability in a complex topography. In this study, we designed a subgridding framework for the Canadian High Resolution Deterministic Prediction System. The native 2.5 km × 2.5 km resolution forecast was subgridded to a 100 m × 100 m resolution and used as the input for snow modeling over two winters in Glacier National Park, British Columbia, Canada. Air temperature, relative humidity, precipitation and wind speed were first parameterized regarding elevation using six Automatic Weather Stations. Alpine3D was then used to spatialize atmospheric parameters and radiation input accounting for terrain reflections and perform the snow simulations. Modeled snowpack state variables relevant for microwave remote sensing were evaluated against profiles generated with Automatic Weather Stations data and compared to raw HRDPS driven profiles. Overall, the subgridding framework improves the optical grain size (OGS) bias by 0.04 mm, the density bias by 2.7 <em>kg</em> · <em>m</em><sup>−3</sup> and the modelled SWE by 17 % (up to 41 % in the best case scenario). Overall, this work provides the necessary basis for SWE retrieval algorithms using forward modeling in a Bayesian framework." @default.
- W4386011189 created "2023-08-21" @default.
- W4386011189 date "2023-08-20" @default.
- W4386011189 modified "2023-10-17" @default.
- W4386011189 title "Comment on egusphere-2023-1152" @default.
- W4386011189 doi "https://doi.org/10.5194/egusphere-2023-1152-rc1" @default.
- W4386011189 hasPublicationYear "2023" @default.
- W4386011189 type Work @default.
- W4386011189 citedByCount "0" @default.
- W4386011189 crossrefType "peer-review" @default.
- W4386011189 hasBestOaLocation W43860111891 @default.
- W4386011189 hasConcept C107054158 @default.
- W4386011189 hasConcept C127313418 @default.
- W4386011189 hasConcept C127413603 @default.
- W4386011189 hasConcept C153294291 @default.
- W4386011189 hasConcept C161840515 @default.
- W4386011189 hasConcept C197046000 @default.
- W4386011189 hasConcept C205649164 @default.
- W4386011189 hasConcept C2778877292 @default.
- W4386011189 hasConcept C37054046 @default.
- W4386011189 hasConcept C39432304 @default.
- W4386011189 hasConcept C49204034 @default.
- W4386011189 hasConcept C58640448 @default.
- W4386011189 hasConcept C62649853 @default.
- W4386011189 hasConcept C66938386 @default.
- W4386011189 hasConceptScore W4386011189C107054158 @default.
- W4386011189 hasConceptScore W4386011189C127313418 @default.
- W4386011189 hasConceptScore W4386011189C127413603 @default.
- W4386011189 hasConceptScore W4386011189C153294291 @default.
- W4386011189 hasConceptScore W4386011189C161840515 @default.
- W4386011189 hasConceptScore W4386011189C197046000 @default.
- W4386011189 hasConceptScore W4386011189C205649164 @default.
- W4386011189 hasConceptScore W4386011189C2778877292 @default.
- W4386011189 hasConceptScore W4386011189C37054046 @default.
- W4386011189 hasConceptScore W4386011189C39432304 @default.
- W4386011189 hasConceptScore W4386011189C49204034 @default.
- W4386011189 hasConceptScore W4386011189C58640448 @default.
- W4386011189 hasConceptScore W4386011189C62649853 @default.
- W4386011189 hasConceptScore W4386011189C66938386 @default.
- W4386011189 hasLocation W43860111891 @default.
- W4386011189 hasOpenAccess W4386011189 @default.
- W4386011189 hasPrimaryLocation W43860111891 @default.
- W4386011189 hasRelatedWork W1480241165 @default.
- W4386011189 hasRelatedWork W1556733052 @default.
- W4386011189 hasRelatedWork W1894072831 @default.
- W4386011189 hasRelatedWork W2006688535 @default.
- W4386011189 hasRelatedWork W2118444328 @default.
- W4386011189 hasRelatedWork W2131373907 @default.
- W4386011189 hasRelatedWork W2905279710 @default.
- W4386011189 hasRelatedWork W2981953188 @default.
- W4386011189 hasRelatedWork W33622546 @default.
- W4386011189 hasRelatedWork W4244112398 @default.
- W4386011189 isParatext "false" @default.
- W4386011189 isRetracted "false" @default.
- W4386011189 workType "peer-review" @default.