Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386014793> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4386014793 endingPage "418" @default.
- W4386014793 startingPage "411" @default.
- W4386014793 abstract "Neuronal cell segmentation is an essential subject of research for understanding mental illnesses and developing medications to treat them. It is tough and time-consuming to segment each cell from a microscopic image. Sartorius cell segmentation dataset is newly available and very well-annotated dataset of microscopic images of neuronal cells. For the sartorius cell segmentation dataset, we presented an automatic cell segmentation technique based on the Mask-RCNN model. Mask-RCNN is a state-of-the-art technique for image object detection and instance segmentation. We demonstrate how Mask-RCNN can be utilized to effectively segment neuronal cells. The segmentation results we are getting have a high average precision across a wide range of IoU thresholds. We hope that by employing this technique, we will be able to accelerate the discovery of mental disorder treatments." @default.
- W4386014793 created "2023-08-21" @default.
- W4386014793 creator A5001959822 @default.
- W4386014793 creator A5092667218 @default.
- W4386014793 date "2023-01-01" @default.
- W4386014793 modified "2023-09-25" @default.
- W4386014793 title "An Approach for Neuronal Cell Segmentation Based on Mask-RCNN" @default.
- W4386014793 cites W1861492603 @default.
- W4386014793 cites W1903029394 @default.
- W4386014793 cites W2194775991 @default.
- W4386014793 cites W2412782625 @default.
- W4386014793 cites W2565639579 @default.
- W4386014793 cites W2963150697 @default.
- W4386014793 cites W2963769056 @default.
- W4386014793 cites W2963881378 @default.
- W4386014793 cites W2964121718 @default.
- W4386014793 cites W2993182889 @default.
- W4386014793 doi "https://doi.org/10.1007/978-981-99-3691-5_36" @default.
- W4386014793 hasPublicationYear "2023" @default.
- W4386014793 type Work @default.
- W4386014793 citedByCount "0" @default.
- W4386014793 crossrefType "book-chapter" @default.
- W4386014793 hasAuthorship W4386014793A5001959822 @default.
- W4386014793 hasAuthorship W4386014793A5092667218 @default.
- W4386014793 hasConcept C124504099 @default.
- W4386014793 hasConcept C153180895 @default.
- W4386014793 hasConcept C154945302 @default.
- W4386014793 hasConcept C2776151529 @default.
- W4386014793 hasConcept C2781238097 @default.
- W4386014793 hasConcept C31972630 @default.
- W4386014793 hasConcept C41008148 @default.
- W4386014793 hasConcept C65885262 @default.
- W4386014793 hasConcept C89600930 @default.
- W4386014793 hasConceptScore W4386014793C124504099 @default.
- W4386014793 hasConceptScore W4386014793C153180895 @default.
- W4386014793 hasConceptScore W4386014793C154945302 @default.
- W4386014793 hasConceptScore W4386014793C2776151529 @default.
- W4386014793 hasConceptScore W4386014793C2781238097 @default.
- W4386014793 hasConceptScore W4386014793C31972630 @default.
- W4386014793 hasConceptScore W4386014793C41008148 @default.
- W4386014793 hasConceptScore W4386014793C65885262 @default.
- W4386014793 hasConceptScore W4386014793C89600930 @default.
- W4386014793 hasLocation W43860147931 @default.
- W4386014793 hasOpenAccess W4386014793 @default.
- W4386014793 hasPrimaryLocation W43860147931 @default.
- W4386014793 hasRelatedWork W1485614034 @default.
- W4386014793 hasRelatedWork W1669643531 @default.
- W4386014793 hasRelatedWork W2019566805 @default.
- W4386014793 hasRelatedWork W2095705906 @default.
- W4386014793 hasRelatedWork W2112454231 @default.
- W4386014793 hasRelatedWork W2536634271 @default.
- W4386014793 hasRelatedWork W2739874619 @default.
- W4386014793 hasRelatedWork W2975200075 @default.
- W4386014793 hasRelatedWork W1967061043 @default.
- W4386014793 hasRelatedWork W2187221949 @default.
- W4386014793 isParatext "false" @default.
- W4386014793 isRetracted "false" @default.
- W4386014793 workType "book-chapter" @default.